1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * vpmu_counter_access - Test vPMU event counter access 4 * 5 * Copyright (c) 2023 Google LLC. 6 * 7 * This test checks if the guest can see the same number of the PMU event 8 * counters (PMCR_EL0.N) that userspace sets, if the guest can access 9 * those counters, and if the guest is prevented from accessing any 10 * other counters. 11 * It also checks if the userspace accesses to the PMU regsisters honor the 12 * PMCR.N value that's set for the guest. 13 * This test runs only when KVM_CAP_ARM_PMU_V3 is supported on the host. 14 */ 15 #include <kvm_util.h> 16 #include <processor.h> 17 #include <test_util.h> 18 #include <vgic.h> 19 #include <perf/arm_pmuv3.h> 20 #include <linux/bitfield.h> 21 22 /* The max number of the PMU event counters (excluding the cycle counter) */ 23 #define ARMV8_PMU_MAX_GENERAL_COUNTERS (ARMV8_PMU_MAX_COUNTERS - 1) 24 25 /* The cycle counter bit position that's common among the PMU registers */ 26 #define ARMV8_PMU_CYCLE_IDX 31 27 28 struct vpmu_vm { 29 struct kvm_vm *vm; 30 struct kvm_vcpu *vcpu; 31 int gic_fd; 32 }; 33 34 static struct vpmu_vm vpmu_vm; 35 36 struct pmreg_sets { 37 uint64_t set_reg_id; 38 uint64_t clr_reg_id; 39 }; 40 41 #define PMREG_SET(set, clr) {.set_reg_id = set, .clr_reg_id = clr} 42 43 static uint64_t get_pmcr_n(uint64_t pmcr) 44 { 45 return FIELD_GET(ARMV8_PMU_PMCR_N, pmcr); 46 } 47 48 static void set_pmcr_n(uint64_t *pmcr, uint64_t pmcr_n) 49 { 50 u64p_replace_bits((__u64 *) pmcr, pmcr_n, ARMV8_PMU_PMCR_N); 51 } 52 53 static uint64_t get_counters_mask(uint64_t n) 54 { 55 uint64_t mask = BIT(ARMV8_PMU_CYCLE_IDX); 56 57 if (n) 58 mask |= GENMASK(n - 1, 0); 59 return mask; 60 } 61 62 /* Read PMEVTCNTR<n>_EL0 through PMXEVCNTR_EL0 */ 63 static inline unsigned long read_sel_evcntr(int sel) 64 { 65 write_sysreg(sel, pmselr_el0); 66 isb(); 67 return read_sysreg(pmxevcntr_el0); 68 } 69 70 /* Write PMEVTCNTR<n>_EL0 through PMXEVCNTR_EL0 */ 71 static inline void write_sel_evcntr(int sel, unsigned long val) 72 { 73 write_sysreg(sel, pmselr_el0); 74 isb(); 75 write_sysreg(val, pmxevcntr_el0); 76 isb(); 77 } 78 79 /* Read PMEVTYPER<n>_EL0 through PMXEVTYPER_EL0 */ 80 static inline unsigned long read_sel_evtyper(int sel) 81 { 82 write_sysreg(sel, pmselr_el0); 83 isb(); 84 return read_sysreg(pmxevtyper_el0); 85 } 86 87 /* Write PMEVTYPER<n>_EL0 through PMXEVTYPER_EL0 */ 88 static inline void write_sel_evtyper(int sel, unsigned long val) 89 { 90 write_sysreg(sel, pmselr_el0); 91 isb(); 92 write_sysreg(val, pmxevtyper_el0); 93 isb(); 94 } 95 96 static void pmu_disable_reset(void) 97 { 98 uint64_t pmcr = read_sysreg(pmcr_el0); 99 100 /* Reset all counters, disabling them */ 101 pmcr &= ~ARMV8_PMU_PMCR_E; 102 write_sysreg(pmcr | ARMV8_PMU_PMCR_P, pmcr_el0); 103 isb(); 104 } 105 106 #define RETURN_READ_PMEVCNTRN(n) \ 107 return read_sysreg(pmevcntr##n##_el0) 108 static unsigned long read_pmevcntrn(int n) 109 { 110 PMEVN_SWITCH(n, RETURN_READ_PMEVCNTRN); 111 return 0; 112 } 113 114 #define WRITE_PMEVCNTRN(n) \ 115 write_sysreg(val, pmevcntr##n##_el0) 116 static void write_pmevcntrn(int n, unsigned long val) 117 { 118 PMEVN_SWITCH(n, WRITE_PMEVCNTRN); 119 isb(); 120 } 121 122 #define READ_PMEVTYPERN(n) \ 123 return read_sysreg(pmevtyper##n##_el0) 124 static unsigned long read_pmevtypern(int n) 125 { 126 PMEVN_SWITCH(n, READ_PMEVTYPERN); 127 return 0; 128 } 129 130 #define WRITE_PMEVTYPERN(n) \ 131 write_sysreg(val, pmevtyper##n##_el0) 132 static void write_pmevtypern(int n, unsigned long val) 133 { 134 PMEVN_SWITCH(n, WRITE_PMEVTYPERN); 135 isb(); 136 } 137 138 /* 139 * The pmc_accessor structure has pointers to PMEV{CNTR,TYPER}<n>_EL0 140 * accessors that test cases will use. Each of the accessors will 141 * either directly reads/writes PMEV{CNTR,TYPER}<n>_EL0 142 * (i.e. {read,write}_pmev{cnt,type}rn()), or reads/writes them through 143 * PMXEV{CNTR,TYPER}_EL0 (i.e. {read,write}_sel_ev{cnt,type}r()). 144 * 145 * This is used to test that combinations of those accessors provide 146 * the consistent behavior. 147 */ 148 struct pmc_accessor { 149 /* A function to be used to read PMEVTCNTR<n>_EL0 */ 150 unsigned long (*read_cntr)(int idx); 151 /* A function to be used to write PMEVTCNTR<n>_EL0 */ 152 void (*write_cntr)(int idx, unsigned long val); 153 /* A function to be used to read PMEVTYPER<n>_EL0 */ 154 unsigned long (*read_typer)(int idx); 155 /* A function to be used to write PMEVTYPER<n>_EL0 */ 156 void (*write_typer)(int idx, unsigned long val); 157 }; 158 159 struct pmc_accessor pmc_accessors[] = { 160 /* test with all direct accesses */ 161 { read_pmevcntrn, write_pmevcntrn, read_pmevtypern, write_pmevtypern }, 162 /* test with all indirect accesses */ 163 { read_sel_evcntr, write_sel_evcntr, read_sel_evtyper, write_sel_evtyper }, 164 /* read with direct accesses, and write with indirect accesses */ 165 { read_pmevcntrn, write_sel_evcntr, read_pmevtypern, write_sel_evtyper }, 166 /* read with indirect accesses, and write with direct accesses */ 167 { read_sel_evcntr, write_pmevcntrn, read_sel_evtyper, write_pmevtypern }, 168 }; 169 170 /* 171 * Convert a pointer of pmc_accessor to an index in pmc_accessors[], 172 * assuming that the pointer is one of the entries in pmc_accessors[]. 173 */ 174 #define PMC_ACC_TO_IDX(acc) (acc - &pmc_accessors[0]) 175 176 #define GUEST_ASSERT_BITMAP_REG(regname, mask, set_expected) \ 177 { \ 178 uint64_t _tval = read_sysreg(regname); \ 179 \ 180 if (set_expected) \ 181 __GUEST_ASSERT((_tval & mask), \ 182 "tval: 0x%lx; mask: 0x%lx; set_expected: %u", \ 183 _tval, mask, set_expected); \ 184 else \ 185 __GUEST_ASSERT(!(_tval & mask), \ 186 "tval: 0x%lx; mask: 0x%lx; set_expected: %u", \ 187 _tval, mask, set_expected); \ 188 } 189 190 /* 191 * Check if @mask bits in {PMCNTEN,PMINTEN,PMOVS}{SET,CLR} registers 192 * are set or cleared as specified in @set_expected. 193 */ 194 static void check_bitmap_pmu_regs(uint64_t mask, bool set_expected) 195 { 196 GUEST_ASSERT_BITMAP_REG(pmcntenset_el0, mask, set_expected); 197 GUEST_ASSERT_BITMAP_REG(pmcntenclr_el0, mask, set_expected); 198 GUEST_ASSERT_BITMAP_REG(pmintenset_el1, mask, set_expected); 199 GUEST_ASSERT_BITMAP_REG(pmintenclr_el1, mask, set_expected); 200 GUEST_ASSERT_BITMAP_REG(pmovsset_el0, mask, set_expected); 201 GUEST_ASSERT_BITMAP_REG(pmovsclr_el0, mask, set_expected); 202 } 203 204 /* 205 * Check if the bit in {PMCNTEN,PMINTEN,PMOVS}{SET,CLR} registers corresponding 206 * to the specified counter (@pmc_idx) can be read/written as expected. 207 * When @set_op is true, it tries to set the bit for the counter in 208 * those registers by writing the SET registers (the bit won't be set 209 * if the counter is not implemented though). 210 * Otherwise, it tries to clear the bits in the registers by writing 211 * the CLR registers. 212 * Then, it checks if the values indicated in the registers are as expected. 213 */ 214 static void test_bitmap_pmu_regs(int pmc_idx, bool set_op) 215 { 216 uint64_t pmcr_n, test_bit = BIT(pmc_idx); 217 bool set_expected = false; 218 219 if (set_op) { 220 write_sysreg(test_bit, pmcntenset_el0); 221 write_sysreg(test_bit, pmintenset_el1); 222 write_sysreg(test_bit, pmovsset_el0); 223 224 /* The bit will be set only if the counter is implemented */ 225 pmcr_n = get_pmcr_n(read_sysreg(pmcr_el0)); 226 set_expected = (pmc_idx < pmcr_n) ? true : false; 227 } else { 228 write_sysreg(test_bit, pmcntenclr_el0); 229 write_sysreg(test_bit, pmintenclr_el1); 230 write_sysreg(test_bit, pmovsclr_el0); 231 } 232 check_bitmap_pmu_regs(test_bit, set_expected); 233 } 234 235 /* 236 * Tests for reading/writing registers for the (implemented) event counter 237 * specified by @pmc_idx. 238 */ 239 static void test_access_pmc_regs(struct pmc_accessor *acc, int pmc_idx) 240 { 241 uint64_t write_data, read_data; 242 243 /* Disable all PMCs and reset all PMCs to zero. */ 244 pmu_disable_reset(); 245 246 /* 247 * Tests for reading/writing {PMCNTEN,PMINTEN,PMOVS}{SET,CLR}_EL1. 248 */ 249 250 /* Make sure that the bit in those registers are set to 0 */ 251 test_bitmap_pmu_regs(pmc_idx, false); 252 /* Test if setting the bit in those registers works */ 253 test_bitmap_pmu_regs(pmc_idx, true); 254 /* Test if clearing the bit in those registers works */ 255 test_bitmap_pmu_regs(pmc_idx, false); 256 257 /* 258 * Tests for reading/writing the event type register. 259 */ 260 261 /* 262 * Set the event type register to an arbitrary value just for testing 263 * of reading/writing the register. 264 * Arm ARM says that for the event from 0x0000 to 0x003F, 265 * the value indicated in the PMEVTYPER<n>_EL0.evtCount field is 266 * the value written to the field even when the specified event 267 * is not supported. 268 */ 269 write_data = (ARMV8_PMU_EXCLUDE_EL1 | ARMV8_PMUV3_PERFCTR_INST_RETIRED); 270 acc->write_typer(pmc_idx, write_data); 271 read_data = acc->read_typer(pmc_idx); 272 __GUEST_ASSERT(read_data == write_data, 273 "pmc_idx: 0x%x; acc_idx: 0x%lx; read_data: 0x%lx; write_data: 0x%lx", 274 pmc_idx, PMC_ACC_TO_IDX(acc), read_data, write_data); 275 276 /* 277 * Tests for reading/writing the event count register. 278 */ 279 280 read_data = acc->read_cntr(pmc_idx); 281 282 /* The count value must be 0, as it is disabled and reset */ 283 __GUEST_ASSERT(read_data == 0, 284 "pmc_idx: 0x%x; acc_idx: 0x%lx; read_data: 0x%lx", 285 pmc_idx, PMC_ACC_TO_IDX(acc), read_data); 286 287 write_data = read_data + pmc_idx + 0x12345; 288 acc->write_cntr(pmc_idx, write_data); 289 read_data = acc->read_cntr(pmc_idx); 290 __GUEST_ASSERT(read_data == write_data, 291 "pmc_idx: 0x%x; acc_idx: 0x%lx; read_data: 0x%lx; write_data: 0x%lx", 292 pmc_idx, PMC_ACC_TO_IDX(acc), read_data, write_data); 293 } 294 295 #define INVALID_EC (-1ul) 296 uint64_t expected_ec = INVALID_EC; 297 298 static void guest_sync_handler(struct ex_regs *regs) 299 { 300 uint64_t esr, ec; 301 302 esr = read_sysreg(esr_el1); 303 ec = (esr >> ESR_EC_SHIFT) & ESR_EC_MASK; 304 305 __GUEST_ASSERT(expected_ec == ec, 306 "PC: 0x%lx; ESR: 0x%lx; EC: 0x%lx; EC expected: 0x%lx", 307 regs->pc, esr, ec, expected_ec); 308 309 /* skip the trapping instruction */ 310 regs->pc += 4; 311 312 /* Use INVALID_EC to indicate an exception occurred */ 313 expected_ec = INVALID_EC; 314 } 315 316 /* 317 * Run the given operation that should trigger an exception with the 318 * given exception class. The exception handler (guest_sync_handler) 319 * will reset op_end_addr to 0, expected_ec to INVALID_EC, and skip 320 * the instruction that trapped. 321 */ 322 #define TEST_EXCEPTION(ec, ops) \ 323 ({ \ 324 GUEST_ASSERT(ec != INVALID_EC); \ 325 WRITE_ONCE(expected_ec, ec); \ 326 dsb(ish); \ 327 ops; \ 328 GUEST_ASSERT(expected_ec == INVALID_EC); \ 329 }) 330 331 /* 332 * Tests for reading/writing registers for the unimplemented event counter 333 * specified by @pmc_idx (>= PMCR_EL0.N). 334 */ 335 static void test_access_invalid_pmc_regs(struct pmc_accessor *acc, int pmc_idx) 336 { 337 /* 338 * Reading/writing the event count/type registers should cause 339 * an UNDEFINED exception. 340 */ 341 TEST_EXCEPTION(ESR_EC_UNKNOWN, acc->read_cntr(pmc_idx)); 342 TEST_EXCEPTION(ESR_EC_UNKNOWN, acc->write_cntr(pmc_idx, 0)); 343 TEST_EXCEPTION(ESR_EC_UNKNOWN, acc->read_typer(pmc_idx)); 344 TEST_EXCEPTION(ESR_EC_UNKNOWN, acc->write_typer(pmc_idx, 0)); 345 /* 346 * The bit corresponding to the (unimplemented) counter in 347 * {PMCNTEN,PMINTEN,PMOVS}{SET,CLR} registers should be RAZ. 348 */ 349 test_bitmap_pmu_regs(pmc_idx, 1); 350 test_bitmap_pmu_regs(pmc_idx, 0); 351 } 352 353 /* 354 * The guest is configured with PMUv3 with @expected_pmcr_n number of 355 * event counters. 356 * Check if @expected_pmcr_n is consistent with PMCR_EL0.N, and 357 * if reading/writing PMU registers for implemented or unimplemented 358 * counters works as expected. 359 */ 360 static void guest_code(uint64_t expected_pmcr_n) 361 { 362 uint64_t pmcr, pmcr_n, unimp_mask; 363 int i, pmc; 364 365 __GUEST_ASSERT(expected_pmcr_n <= ARMV8_PMU_MAX_GENERAL_COUNTERS, 366 "Expected PMCR.N: 0x%lx; ARMv8 general counters: 0x%x", 367 expected_pmcr_n, ARMV8_PMU_MAX_GENERAL_COUNTERS); 368 369 pmcr = read_sysreg(pmcr_el0); 370 pmcr_n = get_pmcr_n(pmcr); 371 372 /* Make sure that PMCR_EL0.N indicates the value userspace set */ 373 __GUEST_ASSERT(pmcr_n == expected_pmcr_n, 374 "Expected PMCR.N: 0x%lx, PMCR.N: 0x%lx", 375 expected_pmcr_n, pmcr_n); 376 377 /* 378 * Make sure that (RAZ) bits corresponding to unimplemented event 379 * counters in {PMCNTEN,PMINTEN,PMOVS}{SET,CLR} registers are reset 380 * to zero. 381 * (NOTE: bits for implemented event counters are reset to UNKNOWN) 382 */ 383 unimp_mask = GENMASK_ULL(ARMV8_PMU_MAX_GENERAL_COUNTERS - 1, pmcr_n); 384 check_bitmap_pmu_regs(unimp_mask, false); 385 386 /* 387 * Tests for reading/writing PMU registers for implemented counters. 388 * Use each combination of PMEV{CNTR,TYPER}<n>_EL0 accessor functions. 389 */ 390 for (i = 0; i < ARRAY_SIZE(pmc_accessors); i++) { 391 for (pmc = 0; pmc < pmcr_n; pmc++) 392 test_access_pmc_regs(&pmc_accessors[i], pmc); 393 } 394 395 /* 396 * Tests for reading/writing PMU registers for unimplemented counters. 397 * Use each combination of PMEV{CNTR,TYPER}<n>_EL0 accessor functions. 398 */ 399 for (i = 0; i < ARRAY_SIZE(pmc_accessors); i++) { 400 for (pmc = pmcr_n; pmc < ARMV8_PMU_MAX_GENERAL_COUNTERS; pmc++) 401 test_access_invalid_pmc_regs(&pmc_accessors[i], pmc); 402 } 403 404 GUEST_DONE(); 405 } 406 407 /* Create a VM that has one vCPU with PMUv3 configured. */ 408 static void create_vpmu_vm(void *guest_code) 409 { 410 struct kvm_vcpu_init init; 411 uint8_t pmuver, ec; 412 uint64_t dfr0, irq = 23; 413 struct kvm_device_attr irq_attr = { 414 .group = KVM_ARM_VCPU_PMU_V3_CTRL, 415 .attr = KVM_ARM_VCPU_PMU_V3_IRQ, 416 .addr = (uint64_t)&irq, 417 }; 418 struct kvm_device_attr init_attr = { 419 .group = KVM_ARM_VCPU_PMU_V3_CTRL, 420 .attr = KVM_ARM_VCPU_PMU_V3_INIT, 421 }; 422 423 /* The test creates the vpmu_vm multiple times. Ensure a clean state */ 424 memset(&vpmu_vm, 0, sizeof(vpmu_vm)); 425 426 vpmu_vm.vm = vm_create(1); 427 vm_init_descriptor_tables(vpmu_vm.vm); 428 for (ec = 0; ec < ESR_EC_NUM; ec++) { 429 vm_install_sync_handler(vpmu_vm.vm, VECTOR_SYNC_CURRENT, ec, 430 guest_sync_handler); 431 } 432 433 /* Create vCPU with PMUv3 */ 434 vm_ioctl(vpmu_vm.vm, KVM_ARM_PREFERRED_TARGET, &init); 435 init.features[0] |= (1 << KVM_ARM_VCPU_PMU_V3); 436 vpmu_vm.vcpu = aarch64_vcpu_add(vpmu_vm.vm, 0, &init, guest_code); 437 vcpu_init_descriptor_tables(vpmu_vm.vcpu); 438 vpmu_vm.gic_fd = vgic_v3_setup(vpmu_vm.vm, 1, 64); 439 __TEST_REQUIRE(vpmu_vm.gic_fd >= 0, 440 "Failed to create vgic-v3, skipping"); 441 442 /* Make sure that PMUv3 support is indicated in the ID register */ 443 vcpu_get_reg(vpmu_vm.vcpu, 444 KVM_ARM64_SYS_REG(SYS_ID_AA64DFR0_EL1), &dfr0); 445 pmuver = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), dfr0); 446 TEST_ASSERT(pmuver != ID_AA64DFR0_EL1_PMUVer_IMP_DEF && 447 pmuver >= ID_AA64DFR0_EL1_PMUVer_IMP, 448 "Unexpected PMUVER (0x%x) on the vCPU with PMUv3", pmuver); 449 450 /* Initialize vPMU */ 451 vcpu_ioctl(vpmu_vm.vcpu, KVM_SET_DEVICE_ATTR, &irq_attr); 452 vcpu_ioctl(vpmu_vm.vcpu, KVM_SET_DEVICE_ATTR, &init_attr); 453 } 454 455 static void destroy_vpmu_vm(void) 456 { 457 close(vpmu_vm.gic_fd); 458 kvm_vm_free(vpmu_vm.vm); 459 } 460 461 static void run_vcpu(struct kvm_vcpu *vcpu, uint64_t pmcr_n) 462 { 463 struct ucall uc; 464 465 vcpu_args_set(vcpu, 1, pmcr_n); 466 vcpu_run(vcpu); 467 switch (get_ucall(vcpu, &uc)) { 468 case UCALL_ABORT: 469 REPORT_GUEST_ASSERT(uc); 470 break; 471 case UCALL_DONE: 472 break; 473 default: 474 TEST_FAIL("Unknown ucall %lu", uc.cmd); 475 break; 476 } 477 } 478 479 static void test_create_vpmu_vm_with_pmcr_n(uint64_t pmcr_n, bool expect_fail) 480 { 481 struct kvm_vcpu *vcpu; 482 uint64_t pmcr, pmcr_orig; 483 484 create_vpmu_vm(guest_code); 485 vcpu = vpmu_vm.vcpu; 486 487 vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_PMCR_EL0), &pmcr_orig); 488 pmcr = pmcr_orig; 489 490 /* 491 * Setting a larger value of PMCR.N should not modify the field, and 492 * return a success. 493 */ 494 set_pmcr_n(&pmcr, pmcr_n); 495 vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_PMCR_EL0), pmcr); 496 vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_PMCR_EL0), &pmcr); 497 498 if (expect_fail) 499 TEST_ASSERT(pmcr_orig == pmcr, 500 "PMCR.N modified by KVM to a larger value (PMCR: 0x%lx) for pmcr_n: 0x%lx", 501 pmcr, pmcr_n); 502 else 503 TEST_ASSERT(pmcr_n == get_pmcr_n(pmcr), 504 "Failed to update PMCR.N to %lu (received: %lu)", 505 pmcr_n, get_pmcr_n(pmcr)); 506 } 507 508 /* 509 * Create a guest with one vCPU, set the PMCR_EL0.N for the vCPU to @pmcr_n, 510 * and run the test. 511 */ 512 static void run_access_test(uint64_t pmcr_n) 513 { 514 uint64_t sp; 515 struct kvm_vcpu *vcpu; 516 struct kvm_vcpu_init init; 517 518 pr_debug("Test with pmcr_n %lu\n", pmcr_n); 519 520 test_create_vpmu_vm_with_pmcr_n(pmcr_n, false); 521 vcpu = vpmu_vm.vcpu; 522 523 /* Save the initial sp to restore them later to run the guest again */ 524 vcpu_get_reg(vcpu, ARM64_CORE_REG(sp_el1), &sp); 525 526 run_vcpu(vcpu, pmcr_n); 527 528 /* 529 * Reset and re-initialize the vCPU, and run the guest code again to 530 * check if PMCR_EL0.N is preserved. 531 */ 532 vm_ioctl(vpmu_vm.vm, KVM_ARM_PREFERRED_TARGET, &init); 533 init.features[0] |= (1 << KVM_ARM_VCPU_PMU_V3); 534 aarch64_vcpu_setup(vcpu, &init); 535 vcpu_init_descriptor_tables(vcpu); 536 vcpu_set_reg(vcpu, ARM64_CORE_REG(sp_el1), sp); 537 vcpu_set_reg(vcpu, ARM64_CORE_REG(regs.pc), (uint64_t)guest_code); 538 539 run_vcpu(vcpu, pmcr_n); 540 541 destroy_vpmu_vm(); 542 } 543 544 static struct pmreg_sets validity_check_reg_sets[] = { 545 PMREG_SET(SYS_PMCNTENSET_EL0, SYS_PMCNTENCLR_EL0), 546 PMREG_SET(SYS_PMINTENSET_EL1, SYS_PMINTENCLR_EL1), 547 PMREG_SET(SYS_PMOVSSET_EL0, SYS_PMOVSCLR_EL0), 548 }; 549 550 /* 551 * Create a VM, and check if KVM handles the userspace accesses of 552 * the PMU register sets in @validity_check_reg_sets[] correctly. 553 */ 554 static void run_pmregs_validity_test(uint64_t pmcr_n) 555 { 556 int i; 557 struct kvm_vcpu *vcpu; 558 uint64_t set_reg_id, clr_reg_id, reg_val; 559 uint64_t valid_counters_mask, max_counters_mask; 560 561 test_create_vpmu_vm_with_pmcr_n(pmcr_n, false); 562 vcpu = vpmu_vm.vcpu; 563 564 valid_counters_mask = get_counters_mask(pmcr_n); 565 max_counters_mask = get_counters_mask(ARMV8_PMU_MAX_COUNTERS); 566 567 for (i = 0; i < ARRAY_SIZE(validity_check_reg_sets); i++) { 568 set_reg_id = validity_check_reg_sets[i].set_reg_id; 569 clr_reg_id = validity_check_reg_sets[i].clr_reg_id; 570 571 /* 572 * Test if the 'set' and 'clr' variants of the registers 573 * are initialized based on the number of valid counters. 574 */ 575 vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(set_reg_id), ®_val); 576 TEST_ASSERT((reg_val & (~valid_counters_mask)) == 0, 577 "Initial read of set_reg: 0x%llx has unimplemented counters enabled: 0x%lx", 578 KVM_ARM64_SYS_REG(set_reg_id), reg_val); 579 580 vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(clr_reg_id), ®_val); 581 TEST_ASSERT((reg_val & (~valid_counters_mask)) == 0, 582 "Initial read of clr_reg: 0x%llx has unimplemented counters enabled: 0x%lx", 583 KVM_ARM64_SYS_REG(clr_reg_id), reg_val); 584 585 /* 586 * Using the 'set' variant, force-set the register to the 587 * max number of possible counters and test if KVM discards 588 * the bits for unimplemented counters as it should. 589 */ 590 vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(set_reg_id), max_counters_mask); 591 592 vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(set_reg_id), ®_val); 593 TEST_ASSERT((reg_val & (~valid_counters_mask)) == 0, 594 "Read of set_reg: 0x%llx has unimplemented counters enabled: 0x%lx", 595 KVM_ARM64_SYS_REG(set_reg_id), reg_val); 596 597 vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(clr_reg_id), ®_val); 598 TEST_ASSERT((reg_val & (~valid_counters_mask)) == 0, 599 "Read of clr_reg: 0x%llx has unimplemented counters enabled: 0x%lx", 600 KVM_ARM64_SYS_REG(clr_reg_id), reg_val); 601 } 602 603 destroy_vpmu_vm(); 604 } 605 606 /* 607 * Create a guest with one vCPU, and attempt to set the PMCR_EL0.N for 608 * the vCPU to @pmcr_n, which is larger than the host value. 609 * The attempt should fail as @pmcr_n is too big to set for the vCPU. 610 */ 611 static void run_error_test(uint64_t pmcr_n) 612 { 613 pr_debug("Error test with pmcr_n %lu (larger than the host)\n", pmcr_n); 614 615 test_create_vpmu_vm_with_pmcr_n(pmcr_n, true); 616 destroy_vpmu_vm(); 617 } 618 619 /* 620 * Return the default number of implemented PMU event counters excluding 621 * the cycle counter (i.e. PMCR_EL0.N value) for the guest. 622 */ 623 static uint64_t get_pmcr_n_limit(void) 624 { 625 uint64_t pmcr; 626 627 create_vpmu_vm(guest_code); 628 vcpu_get_reg(vpmu_vm.vcpu, KVM_ARM64_SYS_REG(SYS_PMCR_EL0), &pmcr); 629 destroy_vpmu_vm(); 630 return get_pmcr_n(pmcr); 631 } 632 633 int main(void) 634 { 635 uint64_t i, pmcr_n; 636 637 TEST_REQUIRE(kvm_has_cap(KVM_CAP_ARM_PMU_V3)); 638 639 pmcr_n = get_pmcr_n_limit(); 640 for (i = 0; i <= pmcr_n; i++) { 641 run_access_test(i); 642 run_pmregs_validity_test(i); 643 } 644 645 for (i = pmcr_n + 1; i < ARMV8_PMU_MAX_COUNTERS; i++) 646 run_error_test(i); 647 648 return 0; 649 } 650
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.