~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/tools/testing/selftests/kvm/dirty_log_test.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * KVM dirty page logging test
  4  *
  5  * Copyright (C) 2018, Red Hat, Inc.
  6  */
  7 #include <stdio.h>
  8 #include <stdlib.h>
  9 #include <pthread.h>
 10 #include <semaphore.h>
 11 #include <sys/types.h>
 12 #include <signal.h>
 13 #include <errno.h>
 14 #include <linux/bitmap.h>
 15 #include <linux/bitops.h>
 16 #include <linux/atomic.h>
 17 #include <asm/barrier.h>
 18 
 19 #include "kvm_util.h"
 20 #include "test_util.h"
 21 #include "guest_modes.h"
 22 #include "processor.h"
 23 #include "ucall_common.h"
 24 
 25 #define DIRTY_MEM_BITS 30 /* 1G */
 26 #define PAGE_SHIFT_4K  12
 27 
 28 /* The memory slot index to track dirty pages */
 29 #define TEST_MEM_SLOT_INDEX             1
 30 
 31 /* Default guest test virtual memory offset */
 32 #define DEFAULT_GUEST_TEST_MEM          0xc0000000
 33 
 34 /* How many pages to dirty for each guest loop */
 35 #define TEST_PAGES_PER_LOOP             1024
 36 
 37 /* How many host loops to run (one KVM_GET_DIRTY_LOG for each loop) */
 38 #define TEST_HOST_LOOP_N                32UL
 39 
 40 /* Interval for each host loop (ms) */
 41 #define TEST_HOST_LOOP_INTERVAL         10UL
 42 
 43 /* Dirty bitmaps are always little endian, so we need to swap on big endian */
 44 #if defined(__s390x__)
 45 # define BITOP_LE_SWIZZLE       ((BITS_PER_LONG-1) & ~0x7)
 46 # define test_bit_le(nr, addr) \
 47         test_bit((nr) ^ BITOP_LE_SWIZZLE, addr)
 48 # define __set_bit_le(nr, addr) \
 49         __set_bit((nr) ^ BITOP_LE_SWIZZLE, addr)
 50 # define __clear_bit_le(nr, addr) \
 51         __clear_bit((nr) ^ BITOP_LE_SWIZZLE, addr)
 52 # define __test_and_set_bit_le(nr, addr) \
 53         __test_and_set_bit((nr) ^ BITOP_LE_SWIZZLE, addr)
 54 # define __test_and_clear_bit_le(nr, addr) \
 55         __test_and_clear_bit((nr) ^ BITOP_LE_SWIZZLE, addr)
 56 #else
 57 # define test_bit_le                    test_bit
 58 # define __set_bit_le                   __set_bit
 59 # define __clear_bit_le                 __clear_bit
 60 # define __test_and_set_bit_le          __test_and_set_bit
 61 # define __test_and_clear_bit_le        __test_and_clear_bit
 62 #endif
 63 
 64 #define TEST_DIRTY_RING_COUNT           65536
 65 
 66 #define SIG_IPI SIGUSR1
 67 
 68 /*
 69  * Guest/Host shared variables. Ensure addr_gva2hva() and/or
 70  * sync_global_to/from_guest() are used when accessing from
 71  * the host. READ/WRITE_ONCE() should also be used with anything
 72  * that may change.
 73  */
 74 static uint64_t host_page_size;
 75 static uint64_t guest_page_size;
 76 static uint64_t guest_num_pages;
 77 static uint64_t iteration;
 78 
 79 /*
 80  * Guest physical memory offset of the testing memory slot.
 81  * This will be set to the topmost valid physical address minus
 82  * the test memory size.
 83  */
 84 static uint64_t guest_test_phys_mem;
 85 
 86 /*
 87  * Guest virtual memory offset of the testing memory slot.
 88  * Must not conflict with identity mapped test code.
 89  */
 90 static uint64_t guest_test_virt_mem = DEFAULT_GUEST_TEST_MEM;
 91 
 92 /*
 93  * Continuously write to the first 8 bytes of a random pages within
 94  * the testing memory region.
 95  */
 96 static void guest_code(void)
 97 {
 98         uint64_t addr;
 99         int i;
100 
101         /*
102          * On s390x, all pages of a 1M segment are initially marked as dirty
103          * when a page of the segment is written to for the very first time.
104          * To compensate this specialty in this test, we need to touch all
105          * pages during the first iteration.
106          */
107         for (i = 0; i < guest_num_pages; i++) {
108                 addr = guest_test_virt_mem + i * guest_page_size;
109                 vcpu_arch_put_guest(*(uint64_t *)addr, READ_ONCE(iteration));
110         }
111 
112         while (true) {
113                 for (i = 0; i < TEST_PAGES_PER_LOOP; i++) {
114                         addr = guest_test_virt_mem;
115                         addr += (guest_random_u64(&guest_rng) % guest_num_pages)
116                                 * guest_page_size;
117                         addr = align_down(addr, host_page_size);
118 
119                         vcpu_arch_put_guest(*(uint64_t *)addr, READ_ONCE(iteration));
120                 }
121 
122                 GUEST_SYNC(1);
123         }
124 }
125 
126 /* Host variables */
127 static bool host_quit;
128 
129 /* Points to the test VM memory region on which we track dirty logs */
130 static void *host_test_mem;
131 static uint64_t host_num_pages;
132 
133 /* For statistics only */
134 static uint64_t host_dirty_count;
135 static uint64_t host_clear_count;
136 static uint64_t host_track_next_count;
137 
138 /* Whether dirty ring reset is requested, or finished */
139 static sem_t sem_vcpu_stop;
140 static sem_t sem_vcpu_cont;
141 /*
142  * This is only set by main thread, and only cleared by vcpu thread.  It is
143  * used to request vcpu thread to stop at the next GUEST_SYNC, since GUEST_SYNC
144  * is the only place that we'll guarantee both "dirty bit" and "dirty data"
145  * will match.  E.g., SIG_IPI won't guarantee that if the vcpu is interrupted
146  * after setting dirty bit but before the data is written.
147  */
148 static atomic_t vcpu_sync_stop_requested;
149 /*
150  * This is updated by the vcpu thread to tell the host whether it's a
151  * ring-full event.  It should only be read until a sem_wait() of
152  * sem_vcpu_stop and before vcpu continues to run.
153  */
154 static bool dirty_ring_vcpu_ring_full;
155 /*
156  * This is only used for verifying the dirty pages.  Dirty ring has a very
157  * tricky case when the ring just got full, kvm will do userspace exit due to
158  * ring full.  When that happens, the very last PFN is set but actually the
159  * data is not changed (the guest WRITE is not really applied yet), because
160  * we found that the dirty ring is full, refused to continue the vcpu, and
161  * recorded the dirty gfn with the old contents.
162  *
163  * For this specific case, it's safe to skip checking this pfn for this
164  * bit, because it's a redundant bit, and when the write happens later the bit
165  * will be set again.  We use this variable to always keep track of the latest
166  * dirty gfn we've collected, so that if a mismatch of data found later in the
167  * verifying process, we let it pass.
168  */
169 static uint64_t dirty_ring_last_page;
170 
171 enum log_mode_t {
172         /* Only use KVM_GET_DIRTY_LOG for logging */
173         LOG_MODE_DIRTY_LOG = 0,
174 
175         /* Use both KVM_[GET|CLEAR]_DIRTY_LOG for logging */
176         LOG_MODE_CLEAR_LOG = 1,
177 
178         /* Use dirty ring for logging */
179         LOG_MODE_DIRTY_RING = 2,
180 
181         LOG_MODE_NUM,
182 
183         /* Run all supported modes */
184         LOG_MODE_ALL = LOG_MODE_NUM,
185 };
186 
187 /* Mode of logging to test.  Default is to run all supported modes */
188 static enum log_mode_t host_log_mode_option = LOG_MODE_ALL;
189 /* Logging mode for current run */
190 static enum log_mode_t host_log_mode;
191 static pthread_t vcpu_thread;
192 static uint32_t test_dirty_ring_count = TEST_DIRTY_RING_COUNT;
193 
194 static void vcpu_kick(void)
195 {
196         pthread_kill(vcpu_thread, SIG_IPI);
197 }
198 
199 /*
200  * In our test we do signal tricks, let's use a better version of
201  * sem_wait to avoid signal interrupts
202  */
203 static void sem_wait_until(sem_t *sem)
204 {
205         int ret;
206 
207         do
208                 ret = sem_wait(sem);
209         while (ret == -1 && errno == EINTR);
210 }
211 
212 static bool clear_log_supported(void)
213 {
214         return kvm_has_cap(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
215 }
216 
217 static void clear_log_create_vm_done(struct kvm_vm *vm)
218 {
219         u64 manual_caps;
220 
221         manual_caps = kvm_check_cap(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
222         TEST_ASSERT(manual_caps, "MANUAL_CAPS is zero!");
223         manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
224                         KVM_DIRTY_LOG_INITIALLY_SET);
225         vm_enable_cap(vm, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, manual_caps);
226 }
227 
228 static void dirty_log_collect_dirty_pages(struct kvm_vcpu *vcpu, int slot,
229                                           void *bitmap, uint32_t num_pages,
230                                           uint32_t *unused)
231 {
232         kvm_vm_get_dirty_log(vcpu->vm, slot, bitmap);
233 }
234 
235 static void clear_log_collect_dirty_pages(struct kvm_vcpu *vcpu, int slot,
236                                           void *bitmap, uint32_t num_pages,
237                                           uint32_t *unused)
238 {
239         kvm_vm_get_dirty_log(vcpu->vm, slot, bitmap);
240         kvm_vm_clear_dirty_log(vcpu->vm, slot, bitmap, 0, num_pages);
241 }
242 
243 /* Should only be called after a GUEST_SYNC */
244 static void vcpu_handle_sync_stop(void)
245 {
246         if (atomic_read(&vcpu_sync_stop_requested)) {
247                 /* It means main thread is sleeping waiting */
248                 atomic_set(&vcpu_sync_stop_requested, false);
249                 sem_post(&sem_vcpu_stop);
250                 sem_wait_until(&sem_vcpu_cont);
251         }
252 }
253 
254 static void default_after_vcpu_run(struct kvm_vcpu *vcpu, int ret, int err)
255 {
256         struct kvm_run *run = vcpu->run;
257 
258         TEST_ASSERT(ret == 0 || (ret == -1 && err == EINTR),
259                     "vcpu run failed: errno=%d", err);
260 
261         TEST_ASSERT(get_ucall(vcpu, NULL) == UCALL_SYNC,
262                     "Invalid guest sync status: exit_reason=%s",
263                     exit_reason_str(run->exit_reason));
264 
265         vcpu_handle_sync_stop();
266 }
267 
268 static bool dirty_ring_supported(void)
269 {
270         return (kvm_has_cap(KVM_CAP_DIRTY_LOG_RING) ||
271                 kvm_has_cap(KVM_CAP_DIRTY_LOG_RING_ACQ_REL));
272 }
273 
274 static void dirty_ring_create_vm_done(struct kvm_vm *vm)
275 {
276         uint64_t pages;
277         uint32_t limit;
278 
279         /*
280          * We rely on vcpu exit due to full dirty ring state. Adjust
281          * the ring buffer size to ensure we're able to reach the
282          * full dirty ring state.
283          */
284         pages = (1ul << (DIRTY_MEM_BITS - vm->page_shift)) + 3;
285         pages = vm_adjust_num_guest_pages(vm->mode, pages);
286         if (vm->page_size < getpagesize())
287                 pages = vm_num_host_pages(vm->mode, pages);
288 
289         limit = 1 << (31 - __builtin_clz(pages));
290         test_dirty_ring_count = 1 << (31 - __builtin_clz(test_dirty_ring_count));
291         test_dirty_ring_count = min(limit, test_dirty_ring_count);
292         pr_info("dirty ring count: 0x%x\n", test_dirty_ring_count);
293 
294         /*
295          * Switch to dirty ring mode after VM creation but before any
296          * of the vcpu creation.
297          */
298         vm_enable_dirty_ring(vm, test_dirty_ring_count *
299                              sizeof(struct kvm_dirty_gfn));
300 }
301 
302 static inline bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
303 {
304         return smp_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY;
305 }
306 
307 static inline void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
308 {
309         smp_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET);
310 }
311 
312 static uint32_t dirty_ring_collect_one(struct kvm_dirty_gfn *dirty_gfns,
313                                        int slot, void *bitmap,
314                                        uint32_t num_pages, uint32_t *fetch_index)
315 {
316         struct kvm_dirty_gfn *cur;
317         uint32_t count = 0;
318 
319         while (true) {
320                 cur = &dirty_gfns[*fetch_index % test_dirty_ring_count];
321                 if (!dirty_gfn_is_dirtied(cur))
322                         break;
323                 TEST_ASSERT(cur->slot == slot, "Slot number didn't match: "
324                             "%u != %u", cur->slot, slot);
325                 TEST_ASSERT(cur->offset < num_pages, "Offset overflow: "
326                             "0x%llx >= 0x%x", cur->offset, num_pages);
327                 //pr_info("fetch 0x%x page %llu\n", *fetch_index, cur->offset);
328                 __set_bit_le(cur->offset, bitmap);
329                 dirty_ring_last_page = cur->offset;
330                 dirty_gfn_set_collected(cur);
331                 (*fetch_index)++;
332                 count++;
333         }
334 
335         return count;
336 }
337 
338 static void dirty_ring_wait_vcpu(void)
339 {
340         /* This makes sure that hardware PML cache flushed */
341         vcpu_kick();
342         sem_wait_until(&sem_vcpu_stop);
343 }
344 
345 static void dirty_ring_continue_vcpu(void)
346 {
347         pr_info("Notifying vcpu to continue\n");
348         sem_post(&sem_vcpu_cont);
349 }
350 
351 static void dirty_ring_collect_dirty_pages(struct kvm_vcpu *vcpu, int slot,
352                                            void *bitmap, uint32_t num_pages,
353                                            uint32_t *ring_buf_idx)
354 {
355         uint32_t count = 0, cleared;
356         bool continued_vcpu = false;
357 
358         dirty_ring_wait_vcpu();
359 
360         if (!dirty_ring_vcpu_ring_full) {
361                 /*
362                  * This is not a ring-full event, it's safe to allow
363                  * vcpu to continue
364                  */
365                 dirty_ring_continue_vcpu();
366                 continued_vcpu = true;
367         }
368 
369         /* Only have one vcpu */
370         count = dirty_ring_collect_one(vcpu_map_dirty_ring(vcpu),
371                                        slot, bitmap, num_pages,
372                                        ring_buf_idx);
373 
374         cleared = kvm_vm_reset_dirty_ring(vcpu->vm);
375 
376         /*
377          * Cleared pages should be the same as collected, as KVM is supposed to
378          * clear only the entries that have been harvested.
379          */
380         TEST_ASSERT(cleared == count, "Reset dirty pages (%u) mismatch "
381                     "with collected (%u)", cleared, count);
382 
383         if (!continued_vcpu) {
384                 TEST_ASSERT(dirty_ring_vcpu_ring_full,
385                             "Didn't continue vcpu even without ring full");
386                 dirty_ring_continue_vcpu();
387         }
388 
389         pr_info("Iteration %ld collected %u pages\n", iteration, count);
390 }
391 
392 static void dirty_ring_after_vcpu_run(struct kvm_vcpu *vcpu, int ret, int err)
393 {
394         struct kvm_run *run = vcpu->run;
395 
396         /* A ucall-sync or ring-full event is allowed */
397         if (get_ucall(vcpu, NULL) == UCALL_SYNC) {
398                 /* We should allow this to continue */
399                 ;
400         } else if (run->exit_reason == KVM_EXIT_DIRTY_RING_FULL ||
401                    (ret == -1 && err == EINTR)) {
402                 /* Update the flag first before pause */
403                 WRITE_ONCE(dirty_ring_vcpu_ring_full,
404                            run->exit_reason == KVM_EXIT_DIRTY_RING_FULL);
405                 sem_post(&sem_vcpu_stop);
406                 pr_info("vcpu stops because %s...\n",
407                         dirty_ring_vcpu_ring_full ?
408                         "dirty ring is full" : "vcpu is kicked out");
409                 sem_wait_until(&sem_vcpu_cont);
410                 pr_info("vcpu continues now.\n");
411         } else {
412                 TEST_ASSERT(false, "Invalid guest sync status: "
413                             "exit_reason=%s",
414                             exit_reason_str(run->exit_reason));
415         }
416 }
417 
418 struct log_mode {
419         const char *name;
420         /* Return true if this mode is supported, otherwise false */
421         bool (*supported)(void);
422         /* Hook when the vm creation is done (before vcpu creation) */
423         void (*create_vm_done)(struct kvm_vm *vm);
424         /* Hook to collect the dirty pages into the bitmap provided */
425         void (*collect_dirty_pages) (struct kvm_vcpu *vcpu, int slot,
426                                      void *bitmap, uint32_t num_pages,
427                                      uint32_t *ring_buf_idx);
428         /* Hook to call when after each vcpu run */
429         void (*after_vcpu_run)(struct kvm_vcpu *vcpu, int ret, int err);
430 } log_modes[LOG_MODE_NUM] = {
431         {
432                 .name = "dirty-log",
433                 .collect_dirty_pages = dirty_log_collect_dirty_pages,
434                 .after_vcpu_run = default_after_vcpu_run,
435         },
436         {
437                 .name = "clear-log",
438                 .supported = clear_log_supported,
439                 .create_vm_done = clear_log_create_vm_done,
440                 .collect_dirty_pages = clear_log_collect_dirty_pages,
441                 .after_vcpu_run = default_after_vcpu_run,
442         },
443         {
444                 .name = "dirty-ring",
445                 .supported = dirty_ring_supported,
446                 .create_vm_done = dirty_ring_create_vm_done,
447                 .collect_dirty_pages = dirty_ring_collect_dirty_pages,
448                 .after_vcpu_run = dirty_ring_after_vcpu_run,
449         },
450 };
451 
452 /*
453  * We use this bitmap to track some pages that should have its dirty
454  * bit set in the _next_ iteration.  For example, if we detected the
455  * page value changed to current iteration but at the same time the
456  * page bit is cleared in the latest bitmap, then the system must
457  * report that write in the next get dirty log call.
458  */
459 static unsigned long *host_bmap_track;
460 
461 static void log_modes_dump(void)
462 {
463         int i;
464 
465         printf("all");
466         for (i = 0; i < LOG_MODE_NUM; i++)
467                 printf(", %s", log_modes[i].name);
468         printf("\n");
469 }
470 
471 static bool log_mode_supported(void)
472 {
473         struct log_mode *mode = &log_modes[host_log_mode];
474 
475         if (mode->supported)
476                 return mode->supported();
477 
478         return true;
479 }
480 
481 static void log_mode_create_vm_done(struct kvm_vm *vm)
482 {
483         struct log_mode *mode = &log_modes[host_log_mode];
484 
485         if (mode->create_vm_done)
486                 mode->create_vm_done(vm);
487 }
488 
489 static void log_mode_collect_dirty_pages(struct kvm_vcpu *vcpu, int slot,
490                                          void *bitmap, uint32_t num_pages,
491                                          uint32_t *ring_buf_idx)
492 {
493         struct log_mode *mode = &log_modes[host_log_mode];
494 
495         TEST_ASSERT(mode->collect_dirty_pages != NULL,
496                     "collect_dirty_pages() is required for any log mode!");
497         mode->collect_dirty_pages(vcpu, slot, bitmap, num_pages, ring_buf_idx);
498 }
499 
500 static void log_mode_after_vcpu_run(struct kvm_vcpu *vcpu, int ret, int err)
501 {
502         struct log_mode *mode = &log_modes[host_log_mode];
503 
504         if (mode->after_vcpu_run)
505                 mode->after_vcpu_run(vcpu, ret, err);
506 }
507 
508 static void *vcpu_worker(void *data)
509 {
510         int ret;
511         struct kvm_vcpu *vcpu = data;
512         uint64_t pages_count = 0;
513         struct kvm_signal_mask *sigmask = alloca(offsetof(struct kvm_signal_mask, sigset)
514                                                  + sizeof(sigset_t));
515         sigset_t *sigset = (sigset_t *) &sigmask->sigset;
516 
517         /*
518          * SIG_IPI is unblocked atomically while in KVM_RUN.  It causes the
519          * ioctl to return with -EINTR, but it is still pending and we need
520          * to accept it with the sigwait.
521          */
522         sigmask->len = 8;
523         pthread_sigmask(0, NULL, sigset);
524         sigdelset(sigset, SIG_IPI);
525         vcpu_ioctl(vcpu, KVM_SET_SIGNAL_MASK, sigmask);
526 
527         sigemptyset(sigset);
528         sigaddset(sigset, SIG_IPI);
529 
530         while (!READ_ONCE(host_quit)) {
531                 /* Clear any existing kick signals */
532                 pages_count += TEST_PAGES_PER_LOOP;
533                 /* Let the guest dirty the random pages */
534                 ret = __vcpu_run(vcpu);
535                 if (ret == -1 && errno == EINTR) {
536                         int sig = -1;
537                         sigwait(sigset, &sig);
538                         assert(sig == SIG_IPI);
539                 }
540                 log_mode_after_vcpu_run(vcpu, ret, errno);
541         }
542 
543         pr_info("Dirtied %"PRIu64" pages\n", pages_count);
544 
545         return NULL;
546 }
547 
548 static void vm_dirty_log_verify(enum vm_guest_mode mode, unsigned long *bmap)
549 {
550         uint64_t step = vm_num_host_pages(mode, 1);
551         uint64_t page;
552         uint64_t *value_ptr;
553         uint64_t min_iter = 0;
554 
555         for (page = 0; page < host_num_pages; page += step) {
556                 value_ptr = host_test_mem + page * host_page_size;
557 
558                 /* If this is a special page that we were tracking... */
559                 if (__test_and_clear_bit_le(page, host_bmap_track)) {
560                         host_track_next_count++;
561                         TEST_ASSERT(test_bit_le(page, bmap),
562                                     "Page %"PRIu64" should have its dirty bit "
563                                     "set in this iteration but it is missing",
564                                     page);
565                 }
566 
567                 if (__test_and_clear_bit_le(page, bmap)) {
568                         bool matched;
569 
570                         host_dirty_count++;
571 
572                         /*
573                          * If the bit is set, the value written onto
574                          * the corresponding page should be either the
575                          * previous iteration number or the current one.
576                          */
577                         matched = (*value_ptr == iteration ||
578                                    *value_ptr == iteration - 1);
579 
580                         if (host_log_mode == LOG_MODE_DIRTY_RING && !matched) {
581                                 if (*value_ptr == iteration - 2 && min_iter <= iteration - 2) {
582                                         /*
583                                          * Short answer: this case is special
584                                          * only for dirty ring test where the
585                                          * page is the last page before a kvm
586                                          * dirty ring full in iteration N-2.
587                                          *
588                                          * Long answer: Assuming ring size R,
589                                          * one possible condition is:
590                                          *
591                                          *      main thr       vcpu thr
592                                          *      --------       --------
593                                          *    iter=1
594                                          *                   write 1 to page 0~(R-1)
595                                          *                   full, vmexit
596                                          *    collect 0~(R-1)
597                                          *    kick vcpu
598                                          *                   write 1 to (R-1)~(2R-2)
599                                          *                   full, vmexit
600                                          *    iter=2
601                                          *    collect (R-1)~(2R-2)
602                                          *    kick vcpu
603                                          *                   write 1 to (2R-2)
604                                          *                   (NOTE!!! "1" cached in cpu reg)
605                                          *                   write 2 to (2R-1)~(3R-3)
606                                          *                   full, vmexit
607                                          *    iter=3
608                                          *    collect (2R-2)~(3R-3)
609                                          *    (here if we read value on page
610                                          *     "2R-2" is 1, while iter=3!!!)
611                                          *
612                                          * This however can only happen once per iteration.
613                                          */
614                                         min_iter = iteration - 1;
615                                         continue;
616                                 } else if (page == dirty_ring_last_page) {
617                                         /*
618                                          * Please refer to comments in
619                                          * dirty_ring_last_page.
620                                          */
621                                         continue;
622                                 }
623                         }
624 
625                         TEST_ASSERT(matched,
626                                     "Set page %"PRIu64" value %"PRIu64
627                                     " incorrect (iteration=%"PRIu64")",
628                                     page, *value_ptr, iteration);
629                 } else {
630                         host_clear_count++;
631                         /*
632                          * If cleared, the value written can be any
633                          * value smaller or equals to the iteration
634                          * number.  Note that the value can be exactly
635                          * (iteration-1) if that write can happen
636                          * like this:
637                          *
638                          * (1) increase loop count to "iteration-1"
639                          * (2) write to page P happens (with value
640                          *     "iteration-1")
641                          * (3) get dirty log for "iteration-1"; we'll
642                          *     see that page P bit is set (dirtied),
643                          *     and not set the bit in host_bmap_track
644                          * (4) increase loop count to "iteration"
645                          *     (which is current iteration)
646                          * (5) get dirty log for current iteration,
647                          *     we'll see that page P is cleared, with
648                          *     value "iteration-1".
649                          */
650                         TEST_ASSERT(*value_ptr <= iteration,
651                                     "Clear page %"PRIu64" value %"PRIu64
652                                     " incorrect (iteration=%"PRIu64")",
653                                     page, *value_ptr, iteration);
654                         if (*value_ptr == iteration) {
655                                 /*
656                                  * This page is _just_ modified; it
657                                  * should report its dirtyness in the
658                                  * next run
659                                  */
660                                 __set_bit_le(page, host_bmap_track);
661                         }
662                 }
663         }
664 }
665 
666 static struct kvm_vm *create_vm(enum vm_guest_mode mode, struct kvm_vcpu **vcpu,
667                                 uint64_t extra_mem_pages, void *guest_code)
668 {
669         struct kvm_vm *vm;
670 
671         pr_info("Testing guest mode: %s\n", vm_guest_mode_string(mode));
672 
673         vm = __vm_create(VM_SHAPE(mode), 1, extra_mem_pages);
674 
675         log_mode_create_vm_done(vm);
676         *vcpu = vm_vcpu_add(vm, 0, guest_code);
677         return vm;
678 }
679 
680 struct test_params {
681         unsigned long iterations;
682         unsigned long interval;
683         uint64_t phys_offset;
684 };
685 
686 static void run_test(enum vm_guest_mode mode, void *arg)
687 {
688         struct test_params *p = arg;
689         struct kvm_vcpu *vcpu;
690         struct kvm_vm *vm;
691         unsigned long *bmap;
692         uint32_t ring_buf_idx = 0;
693         int sem_val;
694 
695         if (!log_mode_supported()) {
696                 print_skip("Log mode '%s' not supported",
697                            log_modes[host_log_mode].name);
698                 return;
699         }
700 
701         /*
702          * We reserve page table for 2 times of extra dirty mem which
703          * will definitely cover the original (1G+) test range.  Here
704          * we do the calculation with 4K page size which is the
705          * smallest so the page number will be enough for all archs
706          * (e.g., 64K page size guest will need even less memory for
707          * page tables).
708          */
709         vm = create_vm(mode, &vcpu,
710                        2ul << (DIRTY_MEM_BITS - PAGE_SHIFT_4K), guest_code);
711 
712         guest_page_size = vm->page_size;
713         /*
714          * A little more than 1G of guest page sized pages.  Cover the
715          * case where the size is not aligned to 64 pages.
716          */
717         guest_num_pages = (1ul << (DIRTY_MEM_BITS - vm->page_shift)) + 3;
718         guest_num_pages = vm_adjust_num_guest_pages(mode, guest_num_pages);
719 
720         host_page_size = getpagesize();
721         host_num_pages = vm_num_host_pages(mode, guest_num_pages);
722 
723         if (!p->phys_offset) {
724                 guest_test_phys_mem = (vm->max_gfn - guest_num_pages) *
725                                       guest_page_size;
726                 guest_test_phys_mem = align_down(guest_test_phys_mem, host_page_size);
727         } else {
728                 guest_test_phys_mem = p->phys_offset;
729         }
730 
731 #ifdef __s390x__
732         /* Align to 1M (segment size) */
733         guest_test_phys_mem = align_down(guest_test_phys_mem, 1 << 20);
734 #endif
735 
736         pr_info("guest physical test memory offset: 0x%lx\n", guest_test_phys_mem);
737 
738         bmap = bitmap_zalloc(host_num_pages);
739         host_bmap_track = bitmap_zalloc(host_num_pages);
740 
741         /* Add an extra memory slot for testing dirty logging */
742         vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
743                                     guest_test_phys_mem,
744                                     TEST_MEM_SLOT_INDEX,
745                                     guest_num_pages,
746                                     KVM_MEM_LOG_DIRTY_PAGES);
747 
748         /* Do mapping for the dirty track memory slot */
749         virt_map(vm, guest_test_virt_mem, guest_test_phys_mem, guest_num_pages);
750 
751         /* Cache the HVA pointer of the region */
752         host_test_mem = addr_gpa2hva(vm, (vm_paddr_t)guest_test_phys_mem);
753 
754         /* Export the shared variables to the guest */
755         sync_global_to_guest(vm, host_page_size);
756         sync_global_to_guest(vm, guest_page_size);
757         sync_global_to_guest(vm, guest_test_virt_mem);
758         sync_global_to_guest(vm, guest_num_pages);
759 
760         /* Start the iterations */
761         iteration = 1;
762         sync_global_to_guest(vm, iteration);
763         WRITE_ONCE(host_quit, false);
764         host_dirty_count = 0;
765         host_clear_count = 0;
766         host_track_next_count = 0;
767         WRITE_ONCE(dirty_ring_vcpu_ring_full, false);
768 
769         /*
770          * Ensure the previous iteration didn't leave a dangling semaphore, i.e.
771          * that the main task and vCPU worker were synchronized and completed
772          * verification of all iterations.
773          */
774         sem_getvalue(&sem_vcpu_stop, &sem_val);
775         TEST_ASSERT_EQ(sem_val, 0);
776         sem_getvalue(&sem_vcpu_cont, &sem_val);
777         TEST_ASSERT_EQ(sem_val, 0);
778 
779         pthread_create(&vcpu_thread, NULL, vcpu_worker, vcpu);
780 
781         while (iteration < p->iterations) {
782                 /* Give the vcpu thread some time to dirty some pages */
783                 usleep(p->interval * 1000);
784                 log_mode_collect_dirty_pages(vcpu, TEST_MEM_SLOT_INDEX,
785                                              bmap, host_num_pages,
786                                              &ring_buf_idx);
787 
788                 /*
789                  * See vcpu_sync_stop_requested definition for details on why
790                  * we need to stop vcpu when verify data.
791                  */
792                 atomic_set(&vcpu_sync_stop_requested, true);
793                 sem_wait_until(&sem_vcpu_stop);
794                 /*
795                  * NOTE: for dirty ring, it's possible that we didn't stop at
796                  * GUEST_SYNC but instead we stopped because ring is full;
797                  * that's okay too because ring full means we're only missing
798                  * the flush of the last page, and since we handle the last
799                  * page specially verification will succeed anyway.
800                  */
801                 assert(host_log_mode == LOG_MODE_DIRTY_RING ||
802                        atomic_read(&vcpu_sync_stop_requested) == false);
803                 vm_dirty_log_verify(mode, bmap);
804 
805                 /*
806                  * Set host_quit before sem_vcpu_cont in the final iteration to
807                  * ensure that the vCPU worker doesn't resume the guest.  As
808                  * above, the dirty ring test may stop and wait even when not
809                  * explicitly request to do so, i.e. would hang waiting for a
810                  * "continue" if it's allowed to resume the guest.
811                  */
812                 if (++iteration == p->iterations)
813                         WRITE_ONCE(host_quit, true);
814 
815                 sem_post(&sem_vcpu_cont);
816                 sync_global_to_guest(vm, iteration);
817         }
818 
819         pthread_join(vcpu_thread, NULL);
820 
821         pr_info("Total bits checked: dirty (%"PRIu64"), clear (%"PRIu64"), "
822                 "track_next (%"PRIu64")\n", host_dirty_count, host_clear_count,
823                 host_track_next_count);
824 
825         free(bmap);
826         free(host_bmap_track);
827         kvm_vm_free(vm);
828 }
829 
830 static void help(char *name)
831 {
832         puts("");
833         printf("usage: %s [-h] [-i iterations] [-I interval] "
834                "[-p offset] [-m mode]\n", name);
835         puts("");
836         printf(" -c: hint to dirty ring size, in number of entries\n");
837         printf("     (only useful for dirty-ring test; default: %"PRIu32")\n",
838                TEST_DIRTY_RING_COUNT);
839         printf(" -i: specify iteration counts (default: %"PRIu64")\n",
840                TEST_HOST_LOOP_N);
841         printf(" -I: specify interval in ms (default: %"PRIu64" ms)\n",
842                TEST_HOST_LOOP_INTERVAL);
843         printf(" -p: specify guest physical test memory offset\n"
844                "     Warning: a low offset can conflict with the loaded test code.\n");
845         printf(" -M: specify the host logging mode "
846                "(default: run all log modes).  Supported modes: \n\t");
847         log_modes_dump();
848         guest_modes_help();
849         puts("");
850         exit(0);
851 }
852 
853 int main(int argc, char *argv[])
854 {
855         struct test_params p = {
856                 .iterations = TEST_HOST_LOOP_N,
857                 .interval = TEST_HOST_LOOP_INTERVAL,
858         };
859         int opt, i;
860         sigset_t sigset;
861 
862         sem_init(&sem_vcpu_stop, 0, 0);
863         sem_init(&sem_vcpu_cont, 0, 0);
864 
865         guest_modes_append_default();
866 
867         while ((opt = getopt(argc, argv, "c:hi:I:p:m:M:")) != -1) {
868                 switch (opt) {
869                 case 'c':
870                         test_dirty_ring_count = strtol(optarg, NULL, 10);
871                         break;
872                 case 'i':
873                         p.iterations = strtol(optarg, NULL, 10);
874                         break;
875                 case 'I':
876                         p.interval = strtol(optarg, NULL, 10);
877                         break;
878                 case 'p':
879                         p.phys_offset = strtoull(optarg, NULL, 0);
880                         break;
881                 case 'm':
882                         guest_modes_cmdline(optarg);
883                         break;
884                 case 'M':
885                         if (!strcmp(optarg, "all")) {
886                                 host_log_mode_option = LOG_MODE_ALL;
887                                 break;
888                         }
889                         for (i = 0; i < LOG_MODE_NUM; i++) {
890                                 if (!strcmp(optarg, log_modes[i].name)) {
891                                         pr_info("Setting log mode to: '%s'\n",
892                                                 optarg);
893                                         host_log_mode_option = i;
894                                         break;
895                                 }
896                         }
897                         if (i == LOG_MODE_NUM) {
898                                 printf("Log mode '%s' invalid. Please choose "
899                                        "from: ", optarg);
900                                 log_modes_dump();
901                                 exit(1);
902                         }
903                         break;
904                 case 'h':
905                 default:
906                         help(argv[0]);
907                         break;
908                 }
909         }
910 
911         TEST_ASSERT(p.iterations > 2, "Iterations must be greater than two");
912         TEST_ASSERT(p.interval > 0, "Interval must be greater than zero");
913 
914         pr_info("Test iterations: %"PRIu64", interval: %"PRIu64" (ms)\n",
915                 p.iterations, p.interval);
916 
917         srandom(time(0));
918 
919         /* Ensure that vCPU threads start with SIG_IPI blocked.  */
920         sigemptyset(&sigset);
921         sigaddset(&sigset, SIG_IPI);
922         pthread_sigmask(SIG_BLOCK, &sigset, NULL);
923 
924         if (host_log_mode_option == LOG_MODE_ALL) {
925                 /* Run each log mode */
926                 for (i = 0; i < LOG_MODE_NUM; i++) {
927                         pr_info("Testing Log Mode '%s'\n", log_modes[i].name);
928                         host_log_mode = i;
929                         for_each_guest_mode(run_test, &p);
930                 }
931         } else {
932                 host_log_mode = host_log_mode_option;
933                 for_each_guest_mode(run_test, &p);
934         }
935 
936         return 0;
937 }
938 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php