1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * KVM dirty page logging test 4 * 5 * Copyright (C) 2018, Red Hat, Inc. 6 */ 7 #include <stdio.h> 8 #include <stdlib.h> 9 #include <pthread.h> 10 #include <semaphore.h> 11 #include <sys/types.h> 12 #include <signal.h> 13 #include <errno.h> 14 #include <linux/bitmap.h> 15 #include <linux/bitops.h> 16 #include <linux/atomic.h> 17 #include <asm/barrier.h> 18 19 #include "kvm_util.h" 20 #include "test_util.h" 21 #include "guest_modes.h" 22 #include "processor.h" 23 #include "ucall_common.h" 24 25 #define DIRTY_MEM_BITS 30 /* 1G */ 26 #define PAGE_SHIFT_4K 12 27 28 /* The memory slot index to track dirty pages */ 29 #define TEST_MEM_SLOT_INDEX 1 30 31 /* Default guest test virtual memory offset */ 32 #define DEFAULT_GUEST_TEST_MEM 0xc0000000 33 34 /* How many pages to dirty for each guest loop */ 35 #define TEST_PAGES_PER_LOOP 1024 36 37 /* How many host loops to run (one KVM_GET_DIRTY_LOG for each loop) */ 38 #define TEST_HOST_LOOP_N 32UL 39 40 /* Interval for each host loop (ms) */ 41 #define TEST_HOST_LOOP_INTERVAL 10UL 42 43 /* Dirty bitmaps are always little endian, so we need to swap on big endian */ 44 #if defined(__s390x__) 45 # define BITOP_LE_SWIZZLE ((BITS_PER_LONG-1) & ~0x7) 46 # define test_bit_le(nr, addr) \ 47 test_bit((nr) ^ BITOP_LE_SWIZZLE, addr) 48 # define __set_bit_le(nr, addr) \ 49 __set_bit((nr) ^ BITOP_LE_SWIZZLE, addr) 50 # define __clear_bit_le(nr, addr) \ 51 __clear_bit((nr) ^ BITOP_LE_SWIZZLE, addr) 52 # define __test_and_set_bit_le(nr, addr) \ 53 __test_and_set_bit((nr) ^ BITOP_LE_SWIZZLE, addr) 54 # define __test_and_clear_bit_le(nr, addr) \ 55 __test_and_clear_bit((nr) ^ BITOP_LE_SWIZZLE, addr) 56 #else 57 # define test_bit_le test_bit 58 # define __set_bit_le __set_bit 59 # define __clear_bit_le __clear_bit 60 # define __test_and_set_bit_le __test_and_set_bit 61 # define __test_and_clear_bit_le __test_and_clear_bit 62 #endif 63 64 #define TEST_DIRTY_RING_COUNT 65536 65 66 #define SIG_IPI SIGUSR1 67 68 /* 69 * Guest/Host shared variables. Ensure addr_gva2hva() and/or 70 * sync_global_to/from_guest() are used when accessing from 71 * the host. READ/WRITE_ONCE() should also be used with anything 72 * that may change. 73 */ 74 static uint64_t host_page_size; 75 static uint64_t guest_page_size; 76 static uint64_t guest_num_pages; 77 static uint64_t iteration; 78 79 /* 80 * Guest physical memory offset of the testing memory slot. 81 * This will be set to the topmost valid physical address minus 82 * the test memory size. 83 */ 84 static uint64_t guest_test_phys_mem; 85 86 /* 87 * Guest virtual memory offset of the testing memory slot. 88 * Must not conflict with identity mapped test code. 89 */ 90 static uint64_t guest_test_virt_mem = DEFAULT_GUEST_TEST_MEM; 91 92 /* 93 * Continuously write to the first 8 bytes of a random pages within 94 * the testing memory region. 95 */ 96 static void guest_code(void) 97 { 98 uint64_t addr; 99 int i; 100 101 /* 102 * On s390x, all pages of a 1M segment are initially marked as dirty 103 * when a page of the segment is written to for the very first time. 104 * To compensate this specialty in this test, we need to touch all 105 * pages during the first iteration. 106 */ 107 for (i = 0; i < guest_num_pages; i++) { 108 addr = guest_test_virt_mem + i * guest_page_size; 109 vcpu_arch_put_guest(*(uint64_t *)addr, READ_ONCE(iteration)); 110 } 111 112 while (true) { 113 for (i = 0; i < TEST_PAGES_PER_LOOP; i++) { 114 addr = guest_test_virt_mem; 115 addr += (guest_random_u64(&guest_rng) % guest_num_pages) 116 * guest_page_size; 117 addr = align_down(addr, host_page_size); 118 119 vcpu_arch_put_guest(*(uint64_t *)addr, READ_ONCE(iteration)); 120 } 121 122 GUEST_SYNC(1); 123 } 124 } 125 126 /* Host variables */ 127 static bool host_quit; 128 129 /* Points to the test VM memory region on which we track dirty logs */ 130 static void *host_test_mem; 131 static uint64_t host_num_pages; 132 133 /* For statistics only */ 134 static uint64_t host_dirty_count; 135 static uint64_t host_clear_count; 136 static uint64_t host_track_next_count; 137 138 /* Whether dirty ring reset is requested, or finished */ 139 static sem_t sem_vcpu_stop; 140 static sem_t sem_vcpu_cont; 141 /* 142 * This is only set by main thread, and only cleared by vcpu thread. It is 143 * used to request vcpu thread to stop at the next GUEST_SYNC, since GUEST_SYNC 144 * is the only place that we'll guarantee both "dirty bit" and "dirty data" 145 * will match. E.g., SIG_IPI won't guarantee that if the vcpu is interrupted 146 * after setting dirty bit but before the data is written. 147 */ 148 static atomic_t vcpu_sync_stop_requested; 149 /* 150 * This is updated by the vcpu thread to tell the host whether it's a 151 * ring-full event. It should only be read until a sem_wait() of 152 * sem_vcpu_stop and before vcpu continues to run. 153 */ 154 static bool dirty_ring_vcpu_ring_full; 155 /* 156 * This is only used for verifying the dirty pages. Dirty ring has a very 157 * tricky case when the ring just got full, kvm will do userspace exit due to 158 * ring full. When that happens, the very last PFN is set but actually the 159 * data is not changed (the guest WRITE is not really applied yet), because 160 * we found that the dirty ring is full, refused to continue the vcpu, and 161 * recorded the dirty gfn with the old contents. 162 * 163 * For this specific case, it's safe to skip checking this pfn for this 164 * bit, because it's a redundant bit, and when the write happens later the bit 165 * will be set again. We use this variable to always keep track of the latest 166 * dirty gfn we've collected, so that if a mismatch of data found later in the 167 * verifying process, we let it pass. 168 */ 169 static uint64_t dirty_ring_last_page; 170 171 enum log_mode_t { 172 /* Only use KVM_GET_DIRTY_LOG for logging */ 173 LOG_MODE_DIRTY_LOG = 0, 174 175 /* Use both KVM_[GET|CLEAR]_DIRTY_LOG for logging */ 176 LOG_MODE_CLEAR_LOG = 1, 177 178 /* Use dirty ring for logging */ 179 LOG_MODE_DIRTY_RING = 2, 180 181 LOG_MODE_NUM, 182 183 /* Run all supported modes */ 184 LOG_MODE_ALL = LOG_MODE_NUM, 185 }; 186 187 /* Mode of logging to test. Default is to run all supported modes */ 188 static enum log_mode_t host_log_mode_option = LOG_MODE_ALL; 189 /* Logging mode for current run */ 190 static enum log_mode_t host_log_mode; 191 static pthread_t vcpu_thread; 192 static uint32_t test_dirty_ring_count = TEST_DIRTY_RING_COUNT; 193 194 static void vcpu_kick(void) 195 { 196 pthread_kill(vcpu_thread, SIG_IPI); 197 } 198 199 /* 200 * In our test we do signal tricks, let's use a better version of 201 * sem_wait to avoid signal interrupts 202 */ 203 static void sem_wait_until(sem_t *sem) 204 { 205 int ret; 206 207 do 208 ret = sem_wait(sem); 209 while (ret == -1 && errno == EINTR); 210 } 211 212 static bool clear_log_supported(void) 213 { 214 return kvm_has_cap(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 215 } 216 217 static void clear_log_create_vm_done(struct kvm_vm *vm) 218 { 219 u64 manual_caps; 220 221 manual_caps = kvm_check_cap(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 222 TEST_ASSERT(manual_caps, "MANUAL_CAPS is zero!"); 223 manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 224 KVM_DIRTY_LOG_INITIALLY_SET); 225 vm_enable_cap(vm, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, manual_caps); 226 } 227 228 static void dirty_log_collect_dirty_pages(struct kvm_vcpu *vcpu, int slot, 229 void *bitmap, uint32_t num_pages, 230 uint32_t *unused) 231 { 232 kvm_vm_get_dirty_log(vcpu->vm, slot, bitmap); 233 } 234 235 static void clear_log_collect_dirty_pages(struct kvm_vcpu *vcpu, int slot, 236 void *bitmap, uint32_t num_pages, 237 uint32_t *unused) 238 { 239 kvm_vm_get_dirty_log(vcpu->vm, slot, bitmap); 240 kvm_vm_clear_dirty_log(vcpu->vm, slot, bitmap, 0, num_pages); 241 } 242 243 /* Should only be called after a GUEST_SYNC */ 244 static void vcpu_handle_sync_stop(void) 245 { 246 if (atomic_read(&vcpu_sync_stop_requested)) { 247 /* It means main thread is sleeping waiting */ 248 atomic_set(&vcpu_sync_stop_requested, false); 249 sem_post(&sem_vcpu_stop); 250 sem_wait_until(&sem_vcpu_cont); 251 } 252 } 253 254 static void default_after_vcpu_run(struct kvm_vcpu *vcpu, int ret, int err) 255 { 256 struct kvm_run *run = vcpu->run; 257 258 TEST_ASSERT(ret == 0 || (ret == -1 && err == EINTR), 259 "vcpu run failed: errno=%d", err); 260 261 TEST_ASSERT(get_ucall(vcpu, NULL) == UCALL_SYNC, 262 "Invalid guest sync status: exit_reason=%s", 263 exit_reason_str(run->exit_reason)); 264 265 vcpu_handle_sync_stop(); 266 } 267 268 static bool dirty_ring_supported(void) 269 { 270 return (kvm_has_cap(KVM_CAP_DIRTY_LOG_RING) || 271 kvm_has_cap(KVM_CAP_DIRTY_LOG_RING_ACQ_REL)); 272 } 273 274 static void dirty_ring_create_vm_done(struct kvm_vm *vm) 275 { 276 uint64_t pages; 277 uint32_t limit; 278 279 /* 280 * We rely on vcpu exit due to full dirty ring state. Adjust 281 * the ring buffer size to ensure we're able to reach the 282 * full dirty ring state. 283 */ 284 pages = (1ul << (DIRTY_MEM_BITS - vm->page_shift)) + 3; 285 pages = vm_adjust_num_guest_pages(vm->mode, pages); 286 if (vm->page_size < getpagesize()) 287 pages = vm_num_host_pages(vm->mode, pages); 288 289 limit = 1 << (31 - __builtin_clz(pages)); 290 test_dirty_ring_count = 1 << (31 - __builtin_clz(test_dirty_ring_count)); 291 test_dirty_ring_count = min(limit, test_dirty_ring_count); 292 pr_info("dirty ring count: 0x%x\n", test_dirty_ring_count); 293 294 /* 295 * Switch to dirty ring mode after VM creation but before any 296 * of the vcpu creation. 297 */ 298 vm_enable_dirty_ring(vm, test_dirty_ring_count * 299 sizeof(struct kvm_dirty_gfn)); 300 } 301 302 static inline bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 303 { 304 return smp_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; 305 } 306 307 static inline void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 308 { 309 smp_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); 310 } 311 312 static uint32_t dirty_ring_collect_one(struct kvm_dirty_gfn *dirty_gfns, 313 int slot, void *bitmap, 314 uint32_t num_pages, uint32_t *fetch_index) 315 { 316 struct kvm_dirty_gfn *cur; 317 uint32_t count = 0; 318 319 while (true) { 320 cur = &dirty_gfns[*fetch_index % test_dirty_ring_count]; 321 if (!dirty_gfn_is_dirtied(cur)) 322 break; 323 TEST_ASSERT(cur->slot == slot, "Slot number didn't match: " 324 "%u != %u", cur->slot, slot); 325 TEST_ASSERT(cur->offset < num_pages, "Offset overflow: " 326 "0x%llx >= 0x%x", cur->offset, num_pages); 327 //pr_info("fetch 0x%x page %llu\n", *fetch_index, cur->offset); 328 __set_bit_le(cur->offset, bitmap); 329 dirty_ring_last_page = cur->offset; 330 dirty_gfn_set_collected(cur); 331 (*fetch_index)++; 332 count++; 333 } 334 335 return count; 336 } 337 338 static void dirty_ring_wait_vcpu(void) 339 { 340 /* This makes sure that hardware PML cache flushed */ 341 vcpu_kick(); 342 sem_wait_until(&sem_vcpu_stop); 343 } 344 345 static void dirty_ring_continue_vcpu(void) 346 { 347 pr_info("Notifying vcpu to continue\n"); 348 sem_post(&sem_vcpu_cont); 349 } 350 351 static void dirty_ring_collect_dirty_pages(struct kvm_vcpu *vcpu, int slot, 352 void *bitmap, uint32_t num_pages, 353 uint32_t *ring_buf_idx) 354 { 355 uint32_t count = 0, cleared; 356 bool continued_vcpu = false; 357 358 dirty_ring_wait_vcpu(); 359 360 if (!dirty_ring_vcpu_ring_full) { 361 /* 362 * This is not a ring-full event, it's safe to allow 363 * vcpu to continue 364 */ 365 dirty_ring_continue_vcpu(); 366 continued_vcpu = true; 367 } 368 369 /* Only have one vcpu */ 370 count = dirty_ring_collect_one(vcpu_map_dirty_ring(vcpu), 371 slot, bitmap, num_pages, 372 ring_buf_idx); 373 374 cleared = kvm_vm_reset_dirty_ring(vcpu->vm); 375 376 /* 377 * Cleared pages should be the same as collected, as KVM is supposed to 378 * clear only the entries that have been harvested. 379 */ 380 TEST_ASSERT(cleared == count, "Reset dirty pages (%u) mismatch " 381 "with collected (%u)", cleared, count); 382 383 if (!continued_vcpu) { 384 TEST_ASSERT(dirty_ring_vcpu_ring_full, 385 "Didn't continue vcpu even without ring full"); 386 dirty_ring_continue_vcpu(); 387 } 388 389 pr_info("Iteration %ld collected %u pages\n", iteration, count); 390 } 391 392 static void dirty_ring_after_vcpu_run(struct kvm_vcpu *vcpu, int ret, int err) 393 { 394 struct kvm_run *run = vcpu->run; 395 396 /* A ucall-sync or ring-full event is allowed */ 397 if (get_ucall(vcpu, NULL) == UCALL_SYNC) { 398 /* We should allow this to continue */ 399 ; 400 } else if (run->exit_reason == KVM_EXIT_DIRTY_RING_FULL || 401 (ret == -1 && err == EINTR)) { 402 /* Update the flag first before pause */ 403 WRITE_ONCE(dirty_ring_vcpu_ring_full, 404 run->exit_reason == KVM_EXIT_DIRTY_RING_FULL); 405 sem_post(&sem_vcpu_stop); 406 pr_info("vcpu stops because %s...\n", 407 dirty_ring_vcpu_ring_full ? 408 "dirty ring is full" : "vcpu is kicked out"); 409 sem_wait_until(&sem_vcpu_cont); 410 pr_info("vcpu continues now.\n"); 411 } else { 412 TEST_ASSERT(false, "Invalid guest sync status: " 413 "exit_reason=%s", 414 exit_reason_str(run->exit_reason)); 415 } 416 } 417 418 struct log_mode { 419 const char *name; 420 /* Return true if this mode is supported, otherwise false */ 421 bool (*supported)(void); 422 /* Hook when the vm creation is done (before vcpu creation) */ 423 void (*create_vm_done)(struct kvm_vm *vm); 424 /* Hook to collect the dirty pages into the bitmap provided */ 425 void (*collect_dirty_pages) (struct kvm_vcpu *vcpu, int slot, 426 void *bitmap, uint32_t num_pages, 427 uint32_t *ring_buf_idx); 428 /* Hook to call when after each vcpu run */ 429 void (*after_vcpu_run)(struct kvm_vcpu *vcpu, int ret, int err); 430 } log_modes[LOG_MODE_NUM] = { 431 { 432 .name = "dirty-log", 433 .collect_dirty_pages = dirty_log_collect_dirty_pages, 434 .after_vcpu_run = default_after_vcpu_run, 435 }, 436 { 437 .name = "clear-log", 438 .supported = clear_log_supported, 439 .create_vm_done = clear_log_create_vm_done, 440 .collect_dirty_pages = clear_log_collect_dirty_pages, 441 .after_vcpu_run = default_after_vcpu_run, 442 }, 443 { 444 .name = "dirty-ring", 445 .supported = dirty_ring_supported, 446 .create_vm_done = dirty_ring_create_vm_done, 447 .collect_dirty_pages = dirty_ring_collect_dirty_pages, 448 .after_vcpu_run = dirty_ring_after_vcpu_run, 449 }, 450 }; 451 452 /* 453 * We use this bitmap to track some pages that should have its dirty 454 * bit set in the _next_ iteration. For example, if we detected the 455 * page value changed to current iteration but at the same time the 456 * page bit is cleared in the latest bitmap, then the system must 457 * report that write in the next get dirty log call. 458 */ 459 static unsigned long *host_bmap_track; 460 461 static void log_modes_dump(void) 462 { 463 int i; 464 465 printf("all"); 466 for (i = 0; i < LOG_MODE_NUM; i++) 467 printf(", %s", log_modes[i].name); 468 printf("\n"); 469 } 470 471 static bool log_mode_supported(void) 472 { 473 struct log_mode *mode = &log_modes[host_log_mode]; 474 475 if (mode->supported) 476 return mode->supported(); 477 478 return true; 479 } 480 481 static void log_mode_create_vm_done(struct kvm_vm *vm) 482 { 483 struct log_mode *mode = &log_modes[host_log_mode]; 484 485 if (mode->create_vm_done) 486 mode->create_vm_done(vm); 487 } 488 489 static void log_mode_collect_dirty_pages(struct kvm_vcpu *vcpu, int slot, 490 void *bitmap, uint32_t num_pages, 491 uint32_t *ring_buf_idx) 492 { 493 struct log_mode *mode = &log_modes[host_log_mode]; 494 495 TEST_ASSERT(mode->collect_dirty_pages != NULL, 496 "collect_dirty_pages() is required for any log mode!"); 497 mode->collect_dirty_pages(vcpu, slot, bitmap, num_pages, ring_buf_idx); 498 } 499 500 static void log_mode_after_vcpu_run(struct kvm_vcpu *vcpu, int ret, int err) 501 { 502 struct log_mode *mode = &log_modes[host_log_mode]; 503 504 if (mode->after_vcpu_run) 505 mode->after_vcpu_run(vcpu, ret, err); 506 } 507 508 static void *vcpu_worker(void *data) 509 { 510 int ret; 511 struct kvm_vcpu *vcpu = data; 512 uint64_t pages_count = 0; 513 struct kvm_signal_mask *sigmask = alloca(offsetof(struct kvm_signal_mask, sigset) 514 + sizeof(sigset_t)); 515 sigset_t *sigset = (sigset_t *) &sigmask->sigset; 516 517 /* 518 * SIG_IPI is unblocked atomically while in KVM_RUN. It causes the 519 * ioctl to return with -EINTR, but it is still pending and we need 520 * to accept it with the sigwait. 521 */ 522 sigmask->len = 8; 523 pthread_sigmask(0, NULL, sigset); 524 sigdelset(sigset, SIG_IPI); 525 vcpu_ioctl(vcpu, KVM_SET_SIGNAL_MASK, sigmask); 526 527 sigemptyset(sigset); 528 sigaddset(sigset, SIG_IPI); 529 530 while (!READ_ONCE(host_quit)) { 531 /* Clear any existing kick signals */ 532 pages_count += TEST_PAGES_PER_LOOP; 533 /* Let the guest dirty the random pages */ 534 ret = __vcpu_run(vcpu); 535 if (ret == -1 && errno == EINTR) { 536 int sig = -1; 537 sigwait(sigset, &sig); 538 assert(sig == SIG_IPI); 539 } 540 log_mode_after_vcpu_run(vcpu, ret, errno); 541 } 542 543 pr_info("Dirtied %"PRIu64" pages\n", pages_count); 544 545 return NULL; 546 } 547 548 static void vm_dirty_log_verify(enum vm_guest_mode mode, unsigned long *bmap) 549 { 550 uint64_t step = vm_num_host_pages(mode, 1); 551 uint64_t page; 552 uint64_t *value_ptr; 553 uint64_t min_iter = 0; 554 555 for (page = 0; page < host_num_pages; page += step) { 556 value_ptr = host_test_mem + page * host_page_size; 557 558 /* If this is a special page that we were tracking... */ 559 if (__test_and_clear_bit_le(page, host_bmap_track)) { 560 host_track_next_count++; 561 TEST_ASSERT(test_bit_le(page, bmap), 562 "Page %"PRIu64" should have its dirty bit " 563 "set in this iteration but it is missing", 564 page); 565 } 566 567 if (__test_and_clear_bit_le(page, bmap)) { 568 bool matched; 569 570 host_dirty_count++; 571 572 /* 573 * If the bit is set, the value written onto 574 * the corresponding page should be either the 575 * previous iteration number or the current one. 576 */ 577 matched = (*value_ptr == iteration || 578 *value_ptr == iteration - 1); 579 580 if (host_log_mode == LOG_MODE_DIRTY_RING && !matched) { 581 if (*value_ptr == iteration - 2 && min_iter <= iteration - 2) { 582 /* 583 * Short answer: this case is special 584 * only for dirty ring test where the 585 * page is the last page before a kvm 586 * dirty ring full in iteration N-2. 587 * 588 * Long answer: Assuming ring size R, 589 * one possible condition is: 590 * 591 * main thr vcpu thr 592 * -------- -------- 593 * iter=1 594 * write 1 to page 0~(R-1) 595 * full, vmexit 596 * collect 0~(R-1) 597 * kick vcpu 598 * write 1 to (R-1)~(2R-2) 599 * full, vmexit 600 * iter=2 601 * collect (R-1)~(2R-2) 602 * kick vcpu 603 * write 1 to (2R-2) 604 * (NOTE!!! "1" cached in cpu reg) 605 * write 2 to (2R-1)~(3R-3) 606 * full, vmexit 607 * iter=3 608 * collect (2R-2)~(3R-3) 609 * (here if we read value on page 610 * "2R-2" is 1, while iter=3!!!) 611 * 612 * This however can only happen once per iteration. 613 */ 614 min_iter = iteration - 1; 615 continue; 616 } else if (page == dirty_ring_last_page) { 617 /* 618 * Please refer to comments in 619 * dirty_ring_last_page. 620 */ 621 continue; 622 } 623 } 624 625 TEST_ASSERT(matched, 626 "Set page %"PRIu64" value %"PRIu64 627 " incorrect (iteration=%"PRIu64")", 628 page, *value_ptr, iteration); 629 } else { 630 host_clear_count++; 631 /* 632 * If cleared, the value written can be any 633 * value smaller or equals to the iteration 634 * number. Note that the value can be exactly 635 * (iteration-1) if that write can happen 636 * like this: 637 * 638 * (1) increase loop count to "iteration-1" 639 * (2) write to page P happens (with value 640 * "iteration-1") 641 * (3) get dirty log for "iteration-1"; we'll 642 * see that page P bit is set (dirtied), 643 * and not set the bit in host_bmap_track 644 * (4) increase loop count to "iteration" 645 * (which is current iteration) 646 * (5) get dirty log for current iteration, 647 * we'll see that page P is cleared, with 648 * value "iteration-1". 649 */ 650 TEST_ASSERT(*value_ptr <= iteration, 651 "Clear page %"PRIu64" value %"PRIu64 652 " incorrect (iteration=%"PRIu64")", 653 page, *value_ptr, iteration); 654 if (*value_ptr == iteration) { 655 /* 656 * This page is _just_ modified; it 657 * should report its dirtyness in the 658 * next run 659 */ 660 __set_bit_le(page, host_bmap_track); 661 } 662 } 663 } 664 } 665 666 static struct kvm_vm *create_vm(enum vm_guest_mode mode, struct kvm_vcpu **vcpu, 667 uint64_t extra_mem_pages, void *guest_code) 668 { 669 struct kvm_vm *vm; 670 671 pr_info("Testing guest mode: %s\n", vm_guest_mode_string(mode)); 672 673 vm = __vm_create(VM_SHAPE(mode), 1, extra_mem_pages); 674 675 log_mode_create_vm_done(vm); 676 *vcpu = vm_vcpu_add(vm, 0, guest_code); 677 return vm; 678 } 679 680 struct test_params { 681 unsigned long iterations; 682 unsigned long interval; 683 uint64_t phys_offset; 684 }; 685 686 static void run_test(enum vm_guest_mode mode, void *arg) 687 { 688 struct test_params *p = arg; 689 struct kvm_vcpu *vcpu; 690 struct kvm_vm *vm; 691 unsigned long *bmap; 692 uint32_t ring_buf_idx = 0; 693 int sem_val; 694 695 if (!log_mode_supported()) { 696 print_skip("Log mode '%s' not supported", 697 log_modes[host_log_mode].name); 698 return; 699 } 700 701 /* 702 * We reserve page table for 2 times of extra dirty mem which 703 * will definitely cover the original (1G+) test range. Here 704 * we do the calculation with 4K page size which is the 705 * smallest so the page number will be enough for all archs 706 * (e.g., 64K page size guest will need even less memory for 707 * page tables). 708 */ 709 vm = create_vm(mode, &vcpu, 710 2ul << (DIRTY_MEM_BITS - PAGE_SHIFT_4K), guest_code); 711 712 guest_page_size = vm->page_size; 713 /* 714 * A little more than 1G of guest page sized pages. Cover the 715 * case where the size is not aligned to 64 pages. 716 */ 717 guest_num_pages = (1ul << (DIRTY_MEM_BITS - vm->page_shift)) + 3; 718 guest_num_pages = vm_adjust_num_guest_pages(mode, guest_num_pages); 719 720 host_page_size = getpagesize(); 721 host_num_pages = vm_num_host_pages(mode, guest_num_pages); 722 723 if (!p->phys_offset) { 724 guest_test_phys_mem = (vm->max_gfn - guest_num_pages) * 725 guest_page_size; 726 guest_test_phys_mem = align_down(guest_test_phys_mem, host_page_size); 727 } else { 728 guest_test_phys_mem = p->phys_offset; 729 } 730 731 #ifdef __s390x__ 732 /* Align to 1M (segment size) */ 733 guest_test_phys_mem = align_down(guest_test_phys_mem, 1 << 20); 734 #endif 735 736 pr_info("guest physical test memory offset: 0x%lx\n", guest_test_phys_mem); 737 738 bmap = bitmap_zalloc(host_num_pages); 739 host_bmap_track = bitmap_zalloc(host_num_pages); 740 741 /* Add an extra memory slot for testing dirty logging */ 742 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 743 guest_test_phys_mem, 744 TEST_MEM_SLOT_INDEX, 745 guest_num_pages, 746 KVM_MEM_LOG_DIRTY_PAGES); 747 748 /* Do mapping for the dirty track memory slot */ 749 virt_map(vm, guest_test_virt_mem, guest_test_phys_mem, guest_num_pages); 750 751 /* Cache the HVA pointer of the region */ 752 host_test_mem = addr_gpa2hva(vm, (vm_paddr_t)guest_test_phys_mem); 753 754 /* Export the shared variables to the guest */ 755 sync_global_to_guest(vm, host_page_size); 756 sync_global_to_guest(vm, guest_page_size); 757 sync_global_to_guest(vm, guest_test_virt_mem); 758 sync_global_to_guest(vm, guest_num_pages); 759 760 /* Start the iterations */ 761 iteration = 1; 762 sync_global_to_guest(vm, iteration); 763 WRITE_ONCE(host_quit, false); 764 host_dirty_count = 0; 765 host_clear_count = 0; 766 host_track_next_count = 0; 767 WRITE_ONCE(dirty_ring_vcpu_ring_full, false); 768 769 /* 770 * Ensure the previous iteration didn't leave a dangling semaphore, i.e. 771 * that the main task and vCPU worker were synchronized and completed 772 * verification of all iterations. 773 */ 774 sem_getvalue(&sem_vcpu_stop, &sem_val); 775 TEST_ASSERT_EQ(sem_val, 0); 776 sem_getvalue(&sem_vcpu_cont, &sem_val); 777 TEST_ASSERT_EQ(sem_val, 0); 778 779 pthread_create(&vcpu_thread, NULL, vcpu_worker, vcpu); 780 781 while (iteration < p->iterations) { 782 /* Give the vcpu thread some time to dirty some pages */ 783 usleep(p->interval * 1000); 784 log_mode_collect_dirty_pages(vcpu, TEST_MEM_SLOT_INDEX, 785 bmap, host_num_pages, 786 &ring_buf_idx); 787 788 /* 789 * See vcpu_sync_stop_requested definition for details on why 790 * we need to stop vcpu when verify data. 791 */ 792 atomic_set(&vcpu_sync_stop_requested, true); 793 sem_wait_until(&sem_vcpu_stop); 794 /* 795 * NOTE: for dirty ring, it's possible that we didn't stop at 796 * GUEST_SYNC but instead we stopped because ring is full; 797 * that's okay too because ring full means we're only missing 798 * the flush of the last page, and since we handle the last 799 * page specially verification will succeed anyway. 800 */ 801 assert(host_log_mode == LOG_MODE_DIRTY_RING || 802 atomic_read(&vcpu_sync_stop_requested) == false); 803 vm_dirty_log_verify(mode, bmap); 804 805 /* 806 * Set host_quit before sem_vcpu_cont in the final iteration to 807 * ensure that the vCPU worker doesn't resume the guest. As 808 * above, the dirty ring test may stop and wait even when not 809 * explicitly request to do so, i.e. would hang waiting for a 810 * "continue" if it's allowed to resume the guest. 811 */ 812 if (++iteration == p->iterations) 813 WRITE_ONCE(host_quit, true); 814 815 sem_post(&sem_vcpu_cont); 816 sync_global_to_guest(vm, iteration); 817 } 818 819 pthread_join(vcpu_thread, NULL); 820 821 pr_info("Total bits checked: dirty (%"PRIu64"), clear (%"PRIu64"), " 822 "track_next (%"PRIu64")\n", host_dirty_count, host_clear_count, 823 host_track_next_count); 824 825 free(bmap); 826 free(host_bmap_track); 827 kvm_vm_free(vm); 828 } 829 830 static void help(char *name) 831 { 832 puts(""); 833 printf("usage: %s [-h] [-i iterations] [-I interval] " 834 "[-p offset] [-m mode]\n", name); 835 puts(""); 836 printf(" -c: hint to dirty ring size, in number of entries\n"); 837 printf(" (only useful for dirty-ring test; default: %"PRIu32")\n", 838 TEST_DIRTY_RING_COUNT); 839 printf(" -i: specify iteration counts (default: %"PRIu64")\n", 840 TEST_HOST_LOOP_N); 841 printf(" -I: specify interval in ms (default: %"PRIu64" ms)\n", 842 TEST_HOST_LOOP_INTERVAL); 843 printf(" -p: specify guest physical test memory offset\n" 844 " Warning: a low offset can conflict with the loaded test code.\n"); 845 printf(" -M: specify the host logging mode " 846 "(default: run all log modes). Supported modes: \n\t"); 847 log_modes_dump(); 848 guest_modes_help(); 849 puts(""); 850 exit(0); 851 } 852 853 int main(int argc, char *argv[]) 854 { 855 struct test_params p = { 856 .iterations = TEST_HOST_LOOP_N, 857 .interval = TEST_HOST_LOOP_INTERVAL, 858 }; 859 int opt, i; 860 sigset_t sigset; 861 862 sem_init(&sem_vcpu_stop, 0, 0); 863 sem_init(&sem_vcpu_cont, 0, 0); 864 865 guest_modes_append_default(); 866 867 while ((opt = getopt(argc, argv, "c:hi:I:p:m:M:")) != -1) { 868 switch (opt) { 869 case 'c': 870 test_dirty_ring_count = strtol(optarg, NULL, 10); 871 break; 872 case 'i': 873 p.iterations = strtol(optarg, NULL, 10); 874 break; 875 case 'I': 876 p.interval = strtol(optarg, NULL, 10); 877 break; 878 case 'p': 879 p.phys_offset = strtoull(optarg, NULL, 0); 880 break; 881 case 'm': 882 guest_modes_cmdline(optarg); 883 break; 884 case 'M': 885 if (!strcmp(optarg, "all")) { 886 host_log_mode_option = LOG_MODE_ALL; 887 break; 888 } 889 for (i = 0; i < LOG_MODE_NUM; i++) { 890 if (!strcmp(optarg, log_modes[i].name)) { 891 pr_info("Setting log mode to: '%s'\n", 892 optarg); 893 host_log_mode_option = i; 894 break; 895 } 896 } 897 if (i == LOG_MODE_NUM) { 898 printf("Log mode '%s' invalid. Please choose " 899 "from: ", optarg); 900 log_modes_dump(); 901 exit(1); 902 } 903 break; 904 case 'h': 905 default: 906 help(argv[0]); 907 break; 908 } 909 } 910 911 TEST_ASSERT(p.iterations > 2, "Iterations must be greater than two"); 912 TEST_ASSERT(p.interval > 0, "Interval must be greater than zero"); 913 914 pr_info("Test iterations: %"PRIu64", interval: %"PRIu64" (ms)\n", 915 p.iterations, p.interval); 916 917 srandom(time(0)); 918 919 /* Ensure that vCPU threads start with SIG_IPI blocked. */ 920 sigemptyset(&sigset); 921 sigaddset(&sigset, SIG_IPI); 922 pthread_sigmask(SIG_BLOCK, &sigset, NULL); 923 924 if (host_log_mode_option == LOG_MODE_ALL) { 925 /* Run each log mode */ 926 for (i = 0; i < LOG_MODE_NUM; i++) { 927 pr_info("Testing Log Mode '%s'\n", log_modes[i].name); 928 host_log_mode = i; 929 for_each_guest_mode(run_test, &p); 930 } 931 } else { 932 host_log_mode = host_log_mode_option; 933 for_each_guest_mode(run_test, &p); 934 } 935 936 return 0; 937 } 938
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.