~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/tools/testing/selftests/kvm/lib/sparsebit.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Sparse bit array
  4  *
  5  * Copyright (C) 2018, Google LLC.
  6  * Copyright (C) 2018, Red Hat, Inc. (code style cleanup and fuzzing driver)
  7  *
  8  * This library provides functions to support a memory efficient bit array,
  9  * with an index size of 2^64.  A sparsebit array is allocated through
 10  * the use sparsebit_alloc() and free'd via sparsebit_free(),
 11  * such as in the following:
 12  *
 13  *   struct sparsebit *s;
 14  *   s = sparsebit_alloc();
 15  *   sparsebit_free(&s);
 16  *
 17  * The struct sparsebit type resolves down to a struct sparsebit.
 18  * Note that, sparsebit_free() takes a pointer to the sparsebit
 19  * structure.  This is so that sparsebit_free() is able to poison
 20  * the pointer (e.g. set it to NULL) to the struct sparsebit before
 21  * returning to the caller.
 22  *
 23  * Between the return of sparsebit_alloc() and the call of
 24  * sparsebit_free(), there are multiple query and modifying operations
 25  * that can be performed on the allocated sparsebit array.  All of
 26  * these operations take as a parameter the value returned from
 27  * sparsebit_alloc() and most also take a bit index.  Frequently
 28  * used routines include:
 29  *
 30  *  ---- Query Operations
 31  *  sparsebit_is_set(s, idx)
 32  *  sparsebit_is_clear(s, idx)
 33  *  sparsebit_any_set(s)
 34  *  sparsebit_first_set(s)
 35  *  sparsebit_next_set(s, prev_idx)
 36  *
 37  *  ---- Modifying Operations
 38  *  sparsebit_set(s, idx)
 39  *  sparsebit_clear(s, idx)
 40  *  sparsebit_set_num(s, idx, num);
 41  *  sparsebit_clear_num(s, idx, num);
 42  *
 43  * A common operation, is to itterate over all the bits set in a test
 44  * sparsebit array.  This can be done via code with the following structure:
 45  *
 46  *   sparsebit_idx_t idx;
 47  *   if (sparsebit_any_set(s)) {
 48  *     idx = sparsebit_first_set(s);
 49  *     do {
 50  *       ...
 51  *       idx = sparsebit_next_set(s, idx);
 52  *     } while (idx != 0);
 53  *   }
 54  *
 55  * The index of the first bit set needs to be obtained via
 56  * sparsebit_first_set(), because sparsebit_next_set(), needs
 57  * the index of the previously set.  The sparsebit_idx_t type is
 58  * unsigned, so there is no previous index before 0 that is available.
 59  * Also, the call to sparsebit_first_set() is not made unless there
 60  * is at least 1 bit in the array set.  This is because sparsebit_first_set()
 61  * aborts if sparsebit_first_set() is called with no bits set.
 62  * It is the callers responsibility to assure that the
 63  * sparsebit array has at least a single bit set before calling
 64  * sparsebit_first_set().
 65  *
 66  * ==== Implementation Overview ====
 67  * For the most part the internal implementation of sparsebit is
 68  * opaque to the caller.  One important implementation detail that the
 69  * caller may need to be aware of is the spatial complexity of the
 70  * implementation.  This implementation of a sparsebit array is not
 71  * only sparse, in that it uses memory proportional to the number of bits
 72  * set.  It is also efficient in memory usage when most of the bits are
 73  * set.
 74  *
 75  * At a high-level the state of the bit settings are maintained through
 76  * the use of a binary-search tree, where each node contains at least
 77  * the following members:
 78  *
 79  *   typedef uint64_t sparsebit_idx_t;
 80  *   typedef uint64_t sparsebit_num_t;
 81  *
 82  *   sparsebit_idx_t idx;
 83  *   uint32_t mask;
 84  *   sparsebit_num_t num_after;
 85  *
 86  * The idx member contains the bit index of the first bit described by this
 87  * node, while the mask member stores the setting of the first 32-bits.
 88  * The setting of the bit at idx + n, where 0 <= n < 32, is located in the
 89  * mask member at 1 << n.
 90  *
 91  * Nodes are sorted by idx and the bits described by two nodes will never
 92  * overlap. The idx member is always aligned to the mask size, i.e. a
 93  * multiple of 32.
 94  *
 95  * Beyond a typical implementation, the nodes in this implementation also
 96  * contains a member named num_after.  The num_after member holds the
 97  * number of bits immediately after the mask bits that are contiguously set.
 98  * The use of the num_after member allows this implementation to efficiently
 99  * represent cases where most bits are set.  For example, the case of all
100  * but the last two bits set, is represented by the following two nodes:
101  *
102  *   node 0 - idx: 0x0 mask: 0xffffffff num_after: 0xffffffffffffffc0
103  *   node 1 - idx: 0xffffffffffffffe0 mask: 0x3fffffff num_after: 0
104  *
105  * ==== Invariants ====
106  * This implementation usses the following invariants:
107  *
108  *   + Node are only used to represent bits that are set.
109  *     Nodes with a mask of 0 and num_after of 0 are not allowed.
110  *
111  *   + Sum of bits set in all the nodes is equal to the value of
112  *     the struct sparsebit_pvt num_set member.
113  *
114  *   + The setting of at least one bit is always described in a nodes
115  *     mask (mask >= 1).
116  *
117  *   + A node with all mask bits set only occurs when the last bit
118  *     described by the previous node is not equal to this nodes
119  *     starting index - 1.  All such occurences of this condition are
120  *     avoided by moving the setting of the nodes mask bits into
121  *     the previous nodes num_after setting.
122  *
123  *   + Node starting index is evenly divisible by the number of bits
124  *     within a nodes mask member.
125  *
126  *   + Nodes never represent a range of bits that wrap around the
127  *     highest supported index.
128  *
129  *      (idx + MASK_BITS + num_after - 1) <= ((sparsebit_idx_t) 0) - 1)
130  *
131  *     As a consequence of the above, the num_after member of a node
132  *     will always be <=:
133  *
134  *       maximum_index - nodes_starting_index - number_of_mask_bits
135  *
136  *   + Nodes within the binary search tree are sorted based on each
137  *     nodes starting index.
138  *
139  *   + The range of bits described by any two nodes do not overlap.  The
140  *     range of bits described by a single node is:
141  *
142  *       start: node->idx
143  *       end (inclusive): node->idx + MASK_BITS + node->num_after - 1;
144  *
145  * Note, at times these invariants are temporarily violated for a
146  * specific portion of the code.  For example, when setting a mask
147  * bit, there is a small delay between when the mask bit is set and the
148  * value in the struct sparsebit_pvt num_set member is updated.  Other
149  * temporary violations occur when node_split() is called with a specified
150  * index and assures that a node where its mask represents the bit
151  * at the specified index exists.  At times to do this node_split()
152  * must split an existing node into two nodes or create a node that
153  * has no bits set.  Such temporary violations must be corrected before
154  * returning to the caller.  These corrections are typically performed
155  * by the local function node_reduce().
156  */
157 
158 #include "test_util.h"
159 #include "sparsebit.h"
160 #include <limits.h>
161 #include <assert.h>
162 
163 #define DUMP_LINE_MAX 100 /* Does not include indent amount */
164 
165 typedef uint32_t mask_t;
166 #define MASK_BITS (sizeof(mask_t) * CHAR_BIT)
167 
168 struct node {
169         struct node *parent;
170         struct node *left;
171         struct node *right;
172         sparsebit_idx_t idx; /* index of least-significant bit in mask */
173         sparsebit_num_t num_after; /* num contiguously set after mask */
174         mask_t mask;
175 };
176 
177 struct sparsebit {
178         /*
179          * Points to root node of the binary search
180          * tree.  Equal to NULL when no bits are set in
181          * the entire sparsebit array.
182          */
183         struct node *root;
184 
185         /*
186          * A redundant count of the total number of bits set.  Used for
187          * diagnostic purposes and to change the time complexity of
188          * sparsebit_num_set() from O(n) to O(1).
189          * Note: Due to overflow, a value of 0 means none or all set.
190          */
191         sparsebit_num_t num_set;
192 };
193 
194 /* Returns the number of set bits described by the settings
195  * of the node pointed to by nodep.
196  */
197 static sparsebit_num_t node_num_set(struct node *nodep)
198 {
199         return nodep->num_after + __builtin_popcount(nodep->mask);
200 }
201 
202 /* Returns a pointer to the node that describes the
203  * lowest bit index.
204  */
205 static struct node *node_first(const struct sparsebit *s)
206 {
207         struct node *nodep;
208 
209         for (nodep = s->root; nodep && nodep->left; nodep = nodep->left)
210                 ;
211 
212         return nodep;
213 }
214 
215 /* Returns a pointer to the node that describes the
216  * lowest bit index > the index of the node pointed to by np.
217  * Returns NULL if no node with a higher index exists.
218  */
219 static struct node *node_next(const struct sparsebit *s, struct node *np)
220 {
221         struct node *nodep = np;
222 
223         /*
224          * If current node has a right child, next node is the left-most
225          * of the right child.
226          */
227         if (nodep->right) {
228                 for (nodep = nodep->right; nodep->left; nodep = nodep->left)
229                         ;
230                 return nodep;
231         }
232 
233         /*
234          * No right child.  Go up until node is left child of a parent.
235          * That parent is then the next node.
236          */
237         while (nodep->parent && nodep == nodep->parent->right)
238                 nodep = nodep->parent;
239 
240         return nodep->parent;
241 }
242 
243 /* Searches for and returns a pointer to the node that describes the
244  * highest index < the index of the node pointed to by np.
245  * Returns NULL if no node with a lower index exists.
246  */
247 static struct node *node_prev(const struct sparsebit *s, struct node *np)
248 {
249         struct node *nodep = np;
250 
251         /*
252          * If current node has a left child, next node is the right-most
253          * of the left child.
254          */
255         if (nodep->left) {
256                 for (nodep = nodep->left; nodep->right; nodep = nodep->right)
257                         ;
258                 return (struct node *) nodep;
259         }
260 
261         /*
262          * No left child.  Go up until node is right child of a parent.
263          * That parent is then the next node.
264          */
265         while (nodep->parent && nodep == nodep->parent->left)
266                 nodep = nodep->parent;
267 
268         return (struct node *) nodep->parent;
269 }
270 
271 
272 /* Allocates space to hold a copy of the node sub-tree pointed to by
273  * subtree and duplicates the bit settings to the newly allocated nodes.
274  * Returns the newly allocated copy of subtree.
275  */
276 static struct node *node_copy_subtree(const struct node *subtree)
277 {
278         struct node *root;
279 
280         /* Duplicate the node at the root of the subtree */
281         root = calloc(1, sizeof(*root));
282         if (!root) {
283                 perror("calloc");
284                 abort();
285         }
286 
287         root->idx = subtree->idx;
288         root->mask = subtree->mask;
289         root->num_after = subtree->num_after;
290 
291         /* As needed, recursively duplicate the left and right subtrees */
292         if (subtree->left) {
293                 root->left = node_copy_subtree(subtree->left);
294                 root->left->parent = root;
295         }
296 
297         if (subtree->right) {
298                 root->right = node_copy_subtree(subtree->right);
299                 root->right->parent = root;
300         }
301 
302         return root;
303 }
304 
305 /* Searches for and returns a pointer to the node that describes the setting
306  * of the bit given by idx.  A node describes the setting of a bit if its
307  * index is within the bits described by the mask bits or the number of
308  * contiguous bits set after the mask.  Returns NULL if there is no such node.
309  */
310 static struct node *node_find(const struct sparsebit *s, sparsebit_idx_t idx)
311 {
312         struct node *nodep;
313 
314         /* Find the node that describes the setting of the bit at idx */
315         for (nodep = s->root; nodep;
316              nodep = nodep->idx > idx ? nodep->left : nodep->right) {
317                 if (idx >= nodep->idx &&
318                     idx <= nodep->idx + MASK_BITS + nodep->num_after - 1)
319                         break;
320         }
321 
322         return nodep;
323 }
324 
325 /* Entry Requirements:
326  *   + A node that describes the setting of idx is not already present.
327  *
328  * Adds a new node to describe the setting of the bit at the index given
329  * by idx.  Returns a pointer to the newly added node.
330  *
331  * TODO(lhuemill): Degenerate cases causes the tree to get unbalanced.
332  */
333 static struct node *node_add(struct sparsebit *s, sparsebit_idx_t idx)
334 {
335         struct node *nodep, *parentp, *prev;
336 
337         /* Allocate and initialize the new node. */
338         nodep = calloc(1, sizeof(*nodep));
339         if (!nodep) {
340                 perror("calloc");
341                 abort();
342         }
343 
344         nodep->idx = idx & -MASK_BITS;
345 
346         /* If no nodes, set it up as the root node. */
347         if (!s->root) {
348                 s->root = nodep;
349                 return nodep;
350         }
351 
352         /*
353          * Find the parent where the new node should be attached
354          * and add the node there.
355          */
356         parentp = s->root;
357         while (true) {
358                 if (idx < parentp->idx) {
359                         if (!parentp->left) {
360                                 parentp->left = nodep;
361                                 nodep->parent = parentp;
362                                 break;
363                         }
364                         parentp = parentp->left;
365                 } else {
366                         assert(idx > parentp->idx + MASK_BITS + parentp->num_after - 1);
367                         if (!parentp->right) {
368                                 parentp->right = nodep;
369                                 nodep->parent = parentp;
370                                 break;
371                         }
372                         parentp = parentp->right;
373                 }
374         }
375 
376         /*
377          * Does num_after bits of previous node overlap with the mask
378          * of the new node?  If so set the bits in the new nodes mask
379          * and reduce the previous nodes num_after.
380          */
381         prev = node_prev(s, nodep);
382         while (prev && prev->idx + MASK_BITS + prev->num_after - 1 >= nodep->idx) {
383                 unsigned int n1 = (prev->idx + MASK_BITS + prev->num_after - 1)
384                         - nodep->idx;
385                 assert(prev->num_after > 0);
386                 assert(n1 < MASK_BITS);
387                 assert(!(nodep->mask & (1 << n1)));
388                 nodep->mask |= (1 << n1);
389                 prev->num_after--;
390         }
391 
392         return nodep;
393 }
394 
395 /* Returns whether all the bits in the sparsebit array are set.  */
396 bool sparsebit_all_set(const struct sparsebit *s)
397 {
398         /*
399          * If any nodes there must be at least one bit set.  Only case
400          * where a bit is set and total num set is 0, is when all bits
401          * are set.
402          */
403         return s->root && s->num_set == 0;
404 }
405 
406 /* Clears all bits described by the node pointed to by nodep, then
407  * removes the node.
408  */
409 static void node_rm(struct sparsebit *s, struct node *nodep)
410 {
411         struct node *tmp;
412         sparsebit_num_t num_set;
413 
414         num_set = node_num_set(nodep);
415         assert(s->num_set >= num_set || sparsebit_all_set(s));
416         s->num_set -= node_num_set(nodep);
417 
418         /* Have both left and right child */
419         if (nodep->left && nodep->right) {
420                 /*
421                  * Move left children to the leftmost leaf node
422                  * of the right child.
423                  */
424                 for (tmp = nodep->right; tmp->left; tmp = tmp->left)
425                         ;
426                 tmp->left = nodep->left;
427                 nodep->left = NULL;
428                 tmp->left->parent = tmp;
429         }
430 
431         /* Left only child */
432         if (nodep->left) {
433                 if (!nodep->parent) {
434                         s->root = nodep->left;
435                         nodep->left->parent = NULL;
436                 } else {
437                         nodep->left->parent = nodep->parent;
438                         if (nodep == nodep->parent->left)
439                                 nodep->parent->left = nodep->left;
440                         else {
441                                 assert(nodep == nodep->parent->right);
442                                 nodep->parent->right = nodep->left;
443                         }
444                 }
445 
446                 nodep->parent = nodep->left = nodep->right = NULL;
447                 free(nodep);
448 
449                 return;
450         }
451 
452 
453         /* Right only child */
454         if (nodep->right) {
455                 if (!nodep->parent) {
456                         s->root = nodep->right;
457                         nodep->right->parent = NULL;
458                 } else {
459                         nodep->right->parent = nodep->parent;
460                         if (nodep == nodep->parent->left)
461                                 nodep->parent->left = nodep->right;
462                         else {
463                                 assert(nodep == nodep->parent->right);
464                                 nodep->parent->right = nodep->right;
465                         }
466                 }
467 
468                 nodep->parent = nodep->left = nodep->right = NULL;
469                 free(nodep);
470 
471                 return;
472         }
473 
474         /* Leaf Node */
475         if (!nodep->parent) {
476                 s->root = NULL;
477         } else {
478                 if (nodep->parent->left == nodep)
479                         nodep->parent->left = NULL;
480                 else {
481                         assert(nodep == nodep->parent->right);
482                         nodep->parent->right = NULL;
483                 }
484         }
485 
486         nodep->parent = nodep->left = nodep->right = NULL;
487         free(nodep);
488 
489         return;
490 }
491 
492 /* Splits the node containing the bit at idx so that there is a node
493  * that starts at the specified index.  If no such node exists, a new
494  * node at the specified index is created.  Returns the new node.
495  *
496  * idx must start of a mask boundary.
497  */
498 static struct node *node_split(struct sparsebit *s, sparsebit_idx_t idx)
499 {
500         struct node *nodep1, *nodep2;
501         sparsebit_idx_t offset;
502         sparsebit_num_t orig_num_after;
503 
504         assert(!(idx % MASK_BITS));
505 
506         /*
507          * Is there a node that describes the setting of idx?
508          * If not, add it.
509          */
510         nodep1 = node_find(s, idx);
511         if (!nodep1)
512                 return node_add(s, idx);
513 
514         /*
515          * All done if the starting index of the node is where the
516          * split should occur.
517          */
518         if (nodep1->idx == idx)
519                 return nodep1;
520 
521         /*
522          * Split point not at start of mask, so it must be part of
523          * bits described by num_after.
524          */
525 
526         /*
527          * Calculate offset within num_after for where the split is
528          * to occur.
529          */
530         offset = idx - (nodep1->idx + MASK_BITS);
531         orig_num_after = nodep1->num_after;
532 
533         /*
534          * Add a new node to describe the bits starting at
535          * the split point.
536          */
537         nodep1->num_after = offset;
538         nodep2 = node_add(s, idx);
539 
540         /* Move bits after the split point into the new node */
541         nodep2->num_after = orig_num_after - offset;
542         if (nodep2->num_after >= MASK_BITS) {
543                 nodep2->mask = ~(mask_t) 0;
544                 nodep2->num_after -= MASK_BITS;
545         } else {
546                 nodep2->mask = (1 << nodep2->num_after) - 1;
547                 nodep2->num_after = 0;
548         }
549 
550         return nodep2;
551 }
552 
553 /* Iteratively reduces the node pointed to by nodep and its adjacent
554  * nodes into a more compact form.  For example, a node with a mask with
555  * all bits set adjacent to a previous node, will get combined into a
556  * single node with an increased num_after setting.
557  *
558  * After each reduction, a further check is made to see if additional
559  * reductions are possible with the new previous and next nodes.  Note,
560  * a search for a reduction is only done across the nodes nearest nodep
561  * and those that became part of a reduction.  Reductions beyond nodep
562  * and the adjacent nodes that are reduced are not discovered.  It is the
563  * responsibility of the caller to pass a nodep that is within one node
564  * of each possible reduction.
565  *
566  * This function does not fix the temporary violation of all invariants.
567  * For example it does not fix the case where the bit settings described
568  * by two or more nodes overlap.  Such a violation introduces the potential
569  * complication of a bit setting for a specific index having different settings
570  * in different nodes.  This would then introduce the further complication
571  * of which node has the correct setting of the bit and thus such conditions
572  * are not allowed.
573  *
574  * This function is designed to fix invariant violations that are introduced
575  * by node_split() and by changes to the nodes mask or num_after members.
576  * For example, when setting a bit within a nodes mask, the function that
577  * sets the bit doesn't have to worry about whether the setting of that
578  * bit caused the mask to have leading only or trailing only bits set.
579  * Instead, the function can call node_reduce(), with nodep equal to the
580  * node address that it set a mask bit in, and node_reduce() will notice
581  * the cases of leading or trailing only bits and that there is an
582  * adjacent node that the bit settings could be merged into.
583  *
584  * This implementation specifically detects and corrects violation of the
585  * following invariants:
586  *
587  *   + Node are only used to represent bits that are set.
588  *     Nodes with a mask of 0 and num_after of 0 are not allowed.
589  *
590  *   + The setting of at least one bit is always described in a nodes
591  *     mask (mask >= 1).
592  *
593  *   + A node with all mask bits set only occurs when the last bit
594  *     described by the previous node is not equal to this nodes
595  *     starting index - 1.  All such occurences of this condition are
596  *     avoided by moving the setting of the nodes mask bits into
597  *     the previous nodes num_after setting.
598  */
599 static void node_reduce(struct sparsebit *s, struct node *nodep)
600 {
601         bool reduction_performed;
602 
603         do {
604                 reduction_performed = false;
605                 struct node *prev, *next, *tmp;
606 
607                 /* 1) Potential reductions within the current node. */
608 
609                 /* Nodes with all bits cleared may be removed. */
610                 if (nodep->mask == 0 && nodep->num_after == 0) {
611                         /*
612                          * About to remove the node pointed to by
613                          * nodep, which normally would cause a problem
614                          * for the next pass through the reduction loop,
615                          * because the node at the starting point no longer
616                          * exists.  This potential problem is handled
617                          * by first remembering the location of the next
618                          * or previous nodes.  Doesn't matter which, because
619                          * once the node at nodep is removed, there will be
620                          * no other nodes between prev and next.
621                          *
622                          * Note, the checks performed on nodep against both
623                          * both prev and next both check for an adjacent
624                          * node that can be reduced into a single node.  As
625                          * such, after removing the node at nodep, doesn't
626                          * matter whether the nodep for the next pass
627                          * through the loop is equal to the previous pass
628                          * prev or next node.  Either way, on the next pass
629                          * the one not selected will become either the
630                          * prev or next node.
631                          */
632                         tmp = node_next(s, nodep);
633                         if (!tmp)
634                                 tmp = node_prev(s, nodep);
635 
636                         node_rm(s, nodep);
637 
638                         nodep = tmp;
639                         reduction_performed = true;
640                         continue;
641                 }
642 
643                 /*
644                  * When the mask is 0, can reduce the amount of num_after
645                  * bits by moving the initial num_after bits into the mask.
646                  */
647                 if (nodep->mask == 0) {
648                         assert(nodep->num_after != 0);
649                         assert(nodep->idx + MASK_BITS > nodep->idx);
650 
651                         nodep->idx += MASK_BITS;
652 
653                         if (nodep->num_after >= MASK_BITS) {
654                                 nodep->mask = ~0;
655                                 nodep->num_after -= MASK_BITS;
656                         } else {
657                                 nodep->mask = (1u << nodep->num_after) - 1;
658                                 nodep->num_after = 0;
659                         }
660 
661                         reduction_performed = true;
662                         continue;
663                 }
664 
665                 /*
666                  * 2) Potential reductions between the current and
667                  * previous nodes.
668                  */
669                 prev = node_prev(s, nodep);
670                 if (prev) {
671                         sparsebit_idx_t prev_highest_bit;
672 
673                         /* Nodes with no bits set can be removed. */
674                         if (prev->mask == 0 && prev->num_after == 0) {
675                                 node_rm(s, prev);
676 
677                                 reduction_performed = true;
678                                 continue;
679                         }
680 
681                         /*
682                          * All mask bits set and previous node has
683                          * adjacent index.
684                          */
685                         if (nodep->mask + 1 == 0 &&
686                             prev->idx + MASK_BITS == nodep->idx) {
687                                 prev->num_after += MASK_BITS + nodep->num_after;
688                                 nodep->mask = 0;
689                                 nodep->num_after = 0;
690 
691                                 reduction_performed = true;
692                                 continue;
693                         }
694 
695                         /*
696                          * Is node adjacent to previous node and the node
697                          * contains a single contiguous range of bits
698                          * starting from the beginning of the mask?
699                          */
700                         prev_highest_bit = prev->idx + MASK_BITS - 1 + prev->num_after;
701                         if (prev_highest_bit + 1 == nodep->idx &&
702                             (nodep->mask | (nodep->mask >> 1)) == nodep->mask) {
703                                 /*
704                                  * How many contiguous bits are there?
705                                  * Is equal to the total number of set
706                                  * bits, due to an earlier check that
707                                  * there is a single contiguous range of
708                                  * set bits.
709                                  */
710                                 unsigned int num_contiguous
711                                         = __builtin_popcount(nodep->mask);
712                                 assert((num_contiguous > 0) &&
713                                        ((1ULL << num_contiguous) - 1) == nodep->mask);
714 
715                                 prev->num_after += num_contiguous;
716                                 nodep->mask = 0;
717 
718                                 /*
719                                  * For predictable performance, handle special
720                                  * case where all mask bits are set and there
721                                  * is a non-zero num_after setting.  This code
722                                  * is functionally correct without the following
723                                  * conditionalized statements, but without them
724                                  * the value of num_after is only reduced by
725                                  * the number of mask bits per pass.  There are
726                                  * cases where num_after can be close to 2^64.
727                                  * Without this code it could take nearly
728                                  * (2^64) / 32 passes to perform the full
729                                  * reduction.
730                                  */
731                                 if (num_contiguous == MASK_BITS) {
732                                         prev->num_after += nodep->num_after;
733                                         nodep->num_after = 0;
734                                 }
735 
736                                 reduction_performed = true;
737                                 continue;
738                         }
739                 }
740 
741                 /*
742                  * 3) Potential reductions between the current and
743                  * next nodes.
744                  */
745                 next = node_next(s, nodep);
746                 if (next) {
747                         /* Nodes with no bits set can be removed. */
748                         if (next->mask == 0 && next->num_after == 0) {
749                                 node_rm(s, next);
750                                 reduction_performed = true;
751                                 continue;
752                         }
753 
754                         /*
755                          * Is next node index adjacent to current node
756                          * and has a mask with all bits set?
757                          */
758                         if (next->idx == nodep->idx + MASK_BITS + nodep->num_after &&
759                             next->mask == ~(mask_t) 0) {
760                                 nodep->num_after += MASK_BITS;
761                                 next->mask = 0;
762                                 nodep->num_after += next->num_after;
763                                 next->num_after = 0;
764 
765                                 node_rm(s, next);
766                                 next = NULL;
767 
768                                 reduction_performed = true;
769                                 continue;
770                         }
771                 }
772         } while (nodep && reduction_performed);
773 }
774 
775 /* Returns whether the bit at the index given by idx, within the
776  * sparsebit array is set or not.
777  */
778 bool sparsebit_is_set(const struct sparsebit *s, sparsebit_idx_t idx)
779 {
780         struct node *nodep;
781 
782         /* Find the node that describes the setting of the bit at idx */
783         for (nodep = s->root; nodep;
784              nodep = nodep->idx > idx ? nodep->left : nodep->right)
785                 if (idx >= nodep->idx &&
786                     idx <= nodep->idx + MASK_BITS + nodep->num_after - 1)
787                         goto have_node;
788 
789         return false;
790 
791 have_node:
792         /* Bit is set if it is any of the bits described by num_after */
793         if (nodep->num_after && idx >= nodep->idx + MASK_BITS)
794                 return true;
795 
796         /* Is the corresponding mask bit set */
797         assert(idx >= nodep->idx && idx - nodep->idx < MASK_BITS);
798         return !!(nodep->mask & (1 << (idx - nodep->idx)));
799 }
800 
801 /* Within the sparsebit array pointed to by s, sets the bit
802  * at the index given by idx.
803  */
804 static void bit_set(struct sparsebit *s, sparsebit_idx_t idx)
805 {
806         struct node *nodep;
807 
808         /* Skip bits that are already set */
809         if (sparsebit_is_set(s, idx))
810                 return;
811 
812         /*
813          * Get a node where the bit at idx is described by the mask.
814          * The node_split will also create a node, if there isn't
815          * already a node that describes the setting of bit.
816          */
817         nodep = node_split(s, idx & -MASK_BITS);
818 
819         /* Set the bit within the nodes mask */
820         assert(idx >= nodep->idx && idx <= nodep->idx + MASK_BITS - 1);
821         assert(!(nodep->mask & (1 << (idx - nodep->idx))));
822         nodep->mask |= 1 << (idx - nodep->idx);
823         s->num_set++;
824 
825         node_reduce(s, nodep);
826 }
827 
828 /* Within the sparsebit array pointed to by s, clears the bit
829  * at the index given by idx.
830  */
831 static void bit_clear(struct sparsebit *s, sparsebit_idx_t idx)
832 {
833         struct node *nodep;
834 
835         /* Skip bits that are already cleared */
836         if (!sparsebit_is_set(s, idx))
837                 return;
838 
839         /* Is there a node that describes the setting of this bit? */
840         nodep = node_find(s, idx);
841         if (!nodep)
842                 return;
843 
844         /*
845          * If a num_after bit, split the node, so that the bit is
846          * part of a node mask.
847          */
848         if (idx >= nodep->idx + MASK_BITS)
849                 nodep = node_split(s, idx & -MASK_BITS);
850 
851         /*
852          * After node_split above, bit at idx should be within the mask.
853          * Clear that bit.
854          */
855         assert(idx >= nodep->idx && idx <= nodep->idx + MASK_BITS - 1);
856         assert(nodep->mask & (1 << (idx - nodep->idx)));
857         nodep->mask &= ~(1 << (idx - nodep->idx));
858         assert(s->num_set > 0 || sparsebit_all_set(s));
859         s->num_set--;
860 
861         node_reduce(s, nodep);
862 }
863 
864 /* Recursively dumps to the FILE stream given by stream the contents
865  * of the sub-tree of nodes pointed to by nodep.  Each line of output
866  * is prefixed by the number of spaces given by indent.  On each
867  * recursion, the indent amount is increased by 2.  This causes nodes
868  * at each level deeper into the binary search tree to be displayed
869  * with a greater indent.
870  */
871 static void dump_nodes(FILE *stream, struct node *nodep,
872         unsigned int indent)
873 {
874         char *node_type;
875 
876         /* Dump contents of node */
877         if (!nodep->parent)
878                 node_type = "root";
879         else if (nodep == nodep->parent->left)
880                 node_type = "left";
881         else {
882                 assert(nodep == nodep->parent->right);
883                 node_type = "right";
884         }
885         fprintf(stream, "%*s---- %s nodep: %p\n", indent, "", node_type, nodep);
886         fprintf(stream, "%*s  parent: %p left: %p right: %p\n", indent, "",
887                 nodep->parent, nodep->left, nodep->right);
888         fprintf(stream, "%*s  idx: 0x%lx mask: 0x%x num_after: 0x%lx\n",
889                 indent, "", nodep->idx, nodep->mask, nodep->num_after);
890 
891         /* If present, dump contents of left child nodes */
892         if (nodep->left)
893                 dump_nodes(stream, nodep->left, indent + 2);
894 
895         /* If present, dump contents of right child nodes */
896         if (nodep->right)
897                 dump_nodes(stream, nodep->right, indent + 2);
898 }
899 
900 static inline sparsebit_idx_t node_first_set(struct node *nodep, int start)
901 {
902         mask_t leading = (mask_t)1 << start;
903         int n1 = __builtin_ctz(nodep->mask & -leading);
904 
905         return nodep->idx + n1;
906 }
907 
908 static inline sparsebit_idx_t node_first_clear(struct node *nodep, int start)
909 {
910         mask_t leading = (mask_t)1 << start;
911         int n1 = __builtin_ctz(~nodep->mask & -leading);
912 
913         return nodep->idx + n1;
914 }
915 
916 /* Dumps to the FILE stream specified by stream, the implementation dependent
917  * internal state of s.  Each line of output is prefixed with the number
918  * of spaces given by indent.  The output is completely implementation
919  * dependent and subject to change.  Output from this function should only
920  * be used for diagnostic purposes.  For example, this function can be
921  * used by test cases after they detect an unexpected condition, as a means
922  * to capture diagnostic information.
923  */
924 static void sparsebit_dump_internal(FILE *stream, const struct sparsebit *s,
925         unsigned int indent)
926 {
927         /* Dump the contents of s */
928         fprintf(stream, "%*sroot: %p\n", indent, "", s->root);
929         fprintf(stream, "%*snum_set: 0x%lx\n", indent, "", s->num_set);
930 
931         if (s->root)
932                 dump_nodes(stream, s->root, indent);
933 }
934 
935 /* Allocates and returns a new sparsebit array. The initial state
936  * of the newly allocated sparsebit array has all bits cleared.
937  */
938 struct sparsebit *sparsebit_alloc(void)
939 {
940         struct sparsebit *s;
941 
942         /* Allocate top level structure. */
943         s = calloc(1, sizeof(*s));
944         if (!s) {
945                 perror("calloc");
946                 abort();
947         }
948 
949         return s;
950 }
951 
952 /* Frees the implementation dependent data for the sparsebit array
953  * pointed to by s and poisons the pointer to that data.
954  */
955 void sparsebit_free(struct sparsebit **sbitp)
956 {
957         struct sparsebit *s = *sbitp;
958 
959         if (!s)
960                 return;
961 
962         sparsebit_clear_all(s);
963         free(s);
964         *sbitp = NULL;
965 }
966 
967 /* Makes a copy of the sparsebit array given by s, to the sparsebit
968  * array given by d.  Note, d must have already been allocated via
969  * sparsebit_alloc().  It can though already have bits set, which
970  * if different from src will be cleared.
971  */
972 void sparsebit_copy(struct sparsebit *d, const struct sparsebit *s)
973 {
974         /* First clear any bits already set in the destination */
975         sparsebit_clear_all(d);
976 
977         if (s->root) {
978                 d->root = node_copy_subtree(s->root);
979                 d->num_set = s->num_set;
980         }
981 }
982 
983 /* Returns whether num consecutive bits starting at idx are all set.  */
984 bool sparsebit_is_set_num(const struct sparsebit *s,
985         sparsebit_idx_t idx, sparsebit_num_t num)
986 {
987         sparsebit_idx_t next_cleared;
988 
989         assert(num > 0);
990         assert(idx + num - 1 >= idx);
991 
992         /* With num > 0, the first bit must be set. */
993         if (!sparsebit_is_set(s, idx))
994                 return false;
995 
996         /* Find the next cleared bit */
997         next_cleared = sparsebit_next_clear(s, idx);
998 
999         /*
1000          * If no cleared bits beyond idx, then there are at least num
1001          * set bits. idx + num doesn't wrap.  Otherwise check if
1002          * there are enough set bits between idx and the next cleared bit.
1003          */
1004         return next_cleared == 0 || next_cleared - idx >= num;
1005 }
1006 
1007 /* Returns whether the bit at the index given by idx.  */
1008 bool sparsebit_is_clear(const struct sparsebit *s,
1009         sparsebit_idx_t idx)
1010 {
1011         return !sparsebit_is_set(s, idx);
1012 }
1013 
1014 /* Returns whether num consecutive bits starting at idx are all cleared.  */
1015 bool sparsebit_is_clear_num(const struct sparsebit *s,
1016         sparsebit_idx_t idx, sparsebit_num_t num)
1017 {
1018         sparsebit_idx_t next_set;
1019 
1020         assert(num > 0);
1021         assert(idx + num - 1 >= idx);
1022 
1023         /* With num > 0, the first bit must be cleared. */
1024         if (!sparsebit_is_clear(s, idx))
1025                 return false;
1026 
1027         /* Find the next set bit */
1028         next_set = sparsebit_next_set(s, idx);
1029 
1030         /*
1031          * If no set bits beyond idx, then there are at least num
1032          * cleared bits. idx + num doesn't wrap.  Otherwise check if
1033          * there are enough cleared bits between idx and the next set bit.
1034          */
1035         return next_set == 0 || next_set - idx >= num;
1036 }
1037 
1038 /* Returns the total number of bits set.  Note: 0 is also returned for
1039  * the case of all bits set.  This is because with all bits set, there
1040  * is 1 additional bit set beyond what can be represented in the return
1041  * value.  Use sparsebit_any_set(), instead of sparsebit_num_set() > 0,
1042  * to determine if the sparsebit array has any bits set.
1043  */
1044 sparsebit_num_t sparsebit_num_set(const struct sparsebit *s)
1045 {
1046         return s->num_set;
1047 }
1048 
1049 /* Returns whether any bit is set in the sparsebit array.  */
1050 bool sparsebit_any_set(const struct sparsebit *s)
1051 {
1052         /*
1053          * Nodes only describe set bits.  If any nodes then there
1054          * is at least 1 bit set.
1055          */
1056         if (!s->root)
1057                 return false;
1058 
1059         /*
1060          * Every node should have a non-zero mask.  For now will
1061          * just assure that the root node has a non-zero mask,
1062          * which is a quick check that at least 1 bit is set.
1063          */
1064         assert(s->root->mask != 0);
1065         assert(s->num_set > 0 ||
1066                (s->root->num_after == ((sparsebit_num_t) 0) - MASK_BITS &&
1067                 s->root->mask == ~(mask_t) 0));
1068 
1069         return true;
1070 }
1071 
1072 /* Returns whether all the bits in the sparsebit array are cleared.  */
1073 bool sparsebit_all_clear(const struct sparsebit *s)
1074 {
1075         return !sparsebit_any_set(s);
1076 }
1077 
1078 /* Returns whether all the bits in the sparsebit array are set.  */
1079 bool sparsebit_any_clear(const struct sparsebit *s)
1080 {
1081         return !sparsebit_all_set(s);
1082 }
1083 
1084 /* Returns the index of the first set bit.  Abort if no bits are set.
1085  */
1086 sparsebit_idx_t sparsebit_first_set(const struct sparsebit *s)
1087 {
1088         struct node *nodep;
1089 
1090         /* Validate at least 1 bit is set */
1091         assert(sparsebit_any_set(s));
1092 
1093         nodep = node_first(s);
1094         return node_first_set(nodep, 0);
1095 }
1096 
1097 /* Returns the index of the first cleared bit.  Abort if
1098  * no bits are cleared.
1099  */
1100 sparsebit_idx_t sparsebit_first_clear(const struct sparsebit *s)
1101 {
1102         struct node *nodep1, *nodep2;
1103 
1104         /* Validate at least 1 bit is cleared. */
1105         assert(sparsebit_any_clear(s));
1106 
1107         /* If no nodes or first node index > 0 then lowest cleared is 0 */
1108         nodep1 = node_first(s);
1109         if (!nodep1 || nodep1->idx > 0)
1110                 return 0;
1111 
1112         /* Does the mask in the first node contain any cleared bits. */
1113         if (nodep1->mask != ~(mask_t) 0)
1114                 return node_first_clear(nodep1, 0);
1115 
1116         /*
1117          * All mask bits set in first node.  If there isn't a second node
1118          * then the first cleared bit is the first bit after the bits
1119          * described by the first node.
1120          */
1121         nodep2 = node_next(s, nodep1);
1122         if (!nodep2) {
1123                 /*
1124                  * No second node.  First cleared bit is first bit beyond
1125                  * bits described by first node.
1126                  */
1127                 assert(nodep1->mask == ~(mask_t) 0);
1128                 assert(nodep1->idx + MASK_BITS + nodep1->num_after != (sparsebit_idx_t) 0);
1129                 return nodep1->idx + MASK_BITS + nodep1->num_after;
1130         }
1131 
1132         /*
1133          * There is a second node.
1134          * If it is not adjacent to the first node, then there is a gap
1135          * of cleared bits between the nodes, and the first cleared bit
1136          * is the first bit within the gap.
1137          */
1138         if (nodep1->idx + MASK_BITS + nodep1->num_after != nodep2->idx)
1139                 return nodep1->idx + MASK_BITS + nodep1->num_after;
1140 
1141         /*
1142          * Second node is adjacent to the first node.
1143          * Because it is adjacent, its mask should be non-zero.  If all
1144          * its mask bits are set, then with it being adjacent, it should
1145          * have had the mask bits moved into the num_after setting of the
1146          * previous node.
1147          */
1148         return node_first_clear(nodep2, 0);
1149 }
1150 
1151 /* Returns index of next bit set within s after the index given by prev.
1152  * Returns 0 if there are no bits after prev that are set.
1153  */
1154 sparsebit_idx_t sparsebit_next_set(const struct sparsebit *s,
1155         sparsebit_idx_t prev)
1156 {
1157         sparsebit_idx_t lowest_possible = prev + 1;
1158         sparsebit_idx_t start;
1159         struct node *nodep;
1160 
1161         /* A bit after the highest index can't be set. */
1162         if (lowest_possible == 0)
1163                 return 0;
1164 
1165         /*
1166          * Find the leftmost 'candidate' overlapping or to the right
1167          * of lowest_possible.
1168          */
1169         struct node *candidate = NULL;
1170 
1171         /* True iff lowest_possible is within candidate */
1172         bool contains = false;
1173 
1174         /*
1175          * Find node that describes setting of bit at lowest_possible.
1176          * If such a node doesn't exist, find the node with the lowest
1177          * starting index that is > lowest_possible.
1178          */
1179         for (nodep = s->root; nodep;) {
1180                 if ((nodep->idx + MASK_BITS + nodep->num_after - 1)
1181                         >= lowest_possible) {
1182                         candidate = nodep;
1183                         if (candidate->idx <= lowest_possible) {
1184                                 contains = true;
1185                                 break;
1186                         }
1187                         nodep = nodep->left;
1188                 } else {
1189                         nodep = nodep->right;
1190                 }
1191         }
1192         if (!candidate)
1193                 return 0;
1194 
1195         assert(candidate->mask != 0);
1196 
1197         /* Does the candidate node describe the setting of lowest_possible? */
1198         if (!contains) {
1199                 /*
1200                  * Candidate doesn't describe setting of bit at lowest_possible.
1201                  * Candidate points to the first node with a starting index
1202                  * > lowest_possible.
1203                  */
1204                 assert(candidate->idx > lowest_possible);
1205 
1206                 return node_first_set(candidate, 0);
1207         }
1208 
1209         /*
1210          * Candidate describes setting of bit at lowest_possible.
1211          * Note: although the node describes the setting of the bit
1212          * at lowest_possible, its possible that its setting and the
1213          * setting of all latter bits described by this node are 0.
1214          * For now, just handle the cases where this node describes
1215          * a bit at or after an index of lowest_possible that is set.
1216          */
1217         start = lowest_possible - candidate->idx;
1218 
1219         if (start < MASK_BITS && candidate->mask >= (1 << start))
1220                 return node_first_set(candidate, start);
1221 
1222         if (candidate->num_after) {
1223                 sparsebit_idx_t first_num_after_idx = candidate->idx + MASK_BITS;
1224 
1225                 return lowest_possible < first_num_after_idx
1226                         ? first_num_after_idx : lowest_possible;
1227         }
1228 
1229         /*
1230          * Although candidate node describes setting of bit at
1231          * the index of lowest_possible, all bits at that index and
1232          * latter that are described by candidate are cleared.  With
1233          * this, the next bit is the first bit in the next node, if
1234          * such a node exists.  If a next node doesn't exist, then
1235          * there is no next set bit.
1236          */
1237         candidate = node_next(s, candidate);
1238         if (!candidate)
1239                 return 0;
1240 
1241         return node_first_set(candidate, 0);
1242 }
1243 
1244 /* Returns index of next bit cleared within s after the index given by prev.
1245  * Returns 0 if there are no bits after prev that are cleared.
1246  */
1247 sparsebit_idx_t sparsebit_next_clear(const struct sparsebit *s,
1248         sparsebit_idx_t prev)
1249 {
1250         sparsebit_idx_t lowest_possible = prev + 1;
1251         sparsebit_idx_t idx;
1252         struct node *nodep1, *nodep2;
1253 
1254         /* A bit after the highest index can't be set. */
1255         if (lowest_possible == 0)
1256                 return 0;
1257 
1258         /*
1259          * Does a node describing the setting of lowest_possible exist?
1260          * If not, the bit at lowest_possible is cleared.
1261          */
1262         nodep1 = node_find(s, lowest_possible);
1263         if (!nodep1)
1264                 return lowest_possible;
1265 
1266         /* Does a mask bit in node 1 describe the next cleared bit. */
1267         for (idx = lowest_possible - nodep1->idx; idx < MASK_BITS; idx++)
1268                 if (!(nodep1->mask & (1 << idx)))
1269                         return nodep1->idx + idx;
1270 
1271         /*
1272          * Next cleared bit is not described by node 1.  If there
1273          * isn't a next node, then next cleared bit is described
1274          * by bit after the bits described by the first node.
1275          */
1276         nodep2 = node_next(s, nodep1);
1277         if (!nodep2)
1278                 return nodep1->idx + MASK_BITS + nodep1->num_after;
1279 
1280         /*
1281          * There is a second node.
1282          * If it is not adjacent to the first node, then there is a gap
1283          * of cleared bits between the nodes, and the next cleared bit
1284          * is the first bit within the gap.
1285          */
1286         if (nodep1->idx + MASK_BITS + nodep1->num_after != nodep2->idx)
1287                 return nodep1->idx + MASK_BITS + nodep1->num_after;
1288 
1289         /*
1290          * Second node is adjacent to the first node.
1291          * Because it is adjacent, its mask should be non-zero.  If all
1292          * its mask bits are set, then with it being adjacent, it should
1293          * have had the mask bits moved into the num_after setting of the
1294          * previous node.
1295          */
1296         return node_first_clear(nodep2, 0);
1297 }
1298 
1299 /* Starting with the index 1 greater than the index given by start, finds
1300  * and returns the index of the first sequence of num consecutively set
1301  * bits.  Returns a value of 0 of no such sequence exists.
1302  */
1303 sparsebit_idx_t sparsebit_next_set_num(const struct sparsebit *s,
1304         sparsebit_idx_t start, sparsebit_num_t num)
1305 {
1306         sparsebit_idx_t idx;
1307 
1308         assert(num >= 1);
1309 
1310         for (idx = sparsebit_next_set(s, start);
1311                 idx != 0 && idx + num - 1 >= idx;
1312                 idx = sparsebit_next_set(s, idx)) {
1313                 assert(sparsebit_is_set(s, idx));
1314 
1315                 /*
1316                  * Does the sequence of bits starting at idx consist of
1317                  * num set bits?
1318                  */
1319                 if (sparsebit_is_set_num(s, idx, num))
1320                         return idx;
1321 
1322                 /*
1323                  * Sequence of set bits at idx isn't large enough.
1324                  * Skip this entire sequence of set bits.
1325                  */
1326                 idx = sparsebit_next_clear(s, idx);
1327                 if (idx == 0)
1328                         return 0;
1329         }
1330 
1331         return 0;
1332 }
1333 
1334 /* Starting with the index 1 greater than the index given by start, finds
1335  * and returns the index of the first sequence of num consecutively cleared
1336  * bits.  Returns a value of 0 of no such sequence exists.
1337  */
1338 sparsebit_idx_t sparsebit_next_clear_num(const struct sparsebit *s,
1339         sparsebit_idx_t start, sparsebit_num_t num)
1340 {
1341         sparsebit_idx_t idx;
1342 
1343         assert(num >= 1);
1344 
1345         for (idx = sparsebit_next_clear(s, start);
1346                 idx != 0 && idx + num - 1 >= idx;
1347                 idx = sparsebit_next_clear(s, idx)) {
1348                 assert(sparsebit_is_clear(s, idx));
1349 
1350                 /*
1351                  * Does the sequence of bits starting at idx consist of
1352                  * num cleared bits?
1353                  */
1354                 if (sparsebit_is_clear_num(s, idx, num))
1355                         return idx;
1356 
1357                 /*
1358                  * Sequence of cleared bits at idx isn't large enough.
1359                  * Skip this entire sequence of cleared bits.
1360                  */
1361                 idx = sparsebit_next_set(s, idx);
1362                 if (idx == 0)
1363                         return 0;
1364         }
1365 
1366         return 0;
1367 }
1368 
1369 /* Sets the bits * in the inclusive range idx through idx + num - 1.  */
1370 void sparsebit_set_num(struct sparsebit *s,
1371         sparsebit_idx_t start, sparsebit_num_t num)
1372 {
1373         struct node *nodep, *next;
1374         unsigned int n1;
1375         sparsebit_idx_t idx;
1376         sparsebit_num_t n;
1377         sparsebit_idx_t middle_start, middle_end;
1378 
1379         assert(num > 0);
1380         assert(start + num - 1 >= start);
1381 
1382         /*
1383          * Leading - bits before first mask boundary.
1384          *
1385          * TODO(lhuemill): With some effort it may be possible to
1386          *   replace the following loop with a sequential sequence
1387          *   of statements.  High level sequence would be:
1388          *
1389          *     1. Use node_split() to force node that describes setting
1390          *        of idx to be within the mask portion of a node.
1391          *     2. Form mask of bits to be set.
1392          *     3. Determine number of mask bits already set in the node
1393          *        and store in a local variable named num_already_set.
1394          *     4. Set the appropriate mask bits within the node.
1395          *     5. Increment struct sparsebit_pvt num_set member
1396          *        by the number of bits that were actually set.
1397          *        Exclude from the counts bits that were already set.
1398          *     6. Before returning to the caller, use node_reduce() to
1399          *        handle the multiple corner cases that this method
1400          *        introduces.
1401          */
1402         for (idx = start, n = num; n > 0 && idx % MASK_BITS != 0; idx++, n--)
1403                 bit_set(s, idx);
1404 
1405         /* Middle - bits spanning one or more entire mask */
1406         middle_start = idx;
1407         middle_end = middle_start + (n & -MASK_BITS) - 1;
1408         if (n >= MASK_BITS) {
1409                 nodep = node_split(s, middle_start);
1410 
1411                 /*
1412                  * As needed, split just after end of middle bits.
1413                  * No split needed if end of middle bits is at highest
1414                  * supported bit index.
1415                  */
1416                 if (middle_end + 1 > middle_end)
1417                         (void) node_split(s, middle_end + 1);
1418 
1419                 /* Delete nodes that only describe bits within the middle. */
1420                 for (next = node_next(s, nodep);
1421                         next && (next->idx < middle_end);
1422                         next = node_next(s, nodep)) {
1423                         assert(next->idx + MASK_BITS + next->num_after - 1 <= middle_end);
1424                         node_rm(s, next);
1425                         next = NULL;
1426                 }
1427 
1428                 /* As needed set each of the mask bits */
1429                 for (n1 = 0; n1 < MASK_BITS; n1++) {
1430                         if (!(nodep->mask & (1 << n1))) {
1431                                 nodep->mask |= 1 << n1;
1432                                 s->num_set++;
1433                         }
1434                 }
1435 
1436                 s->num_set -= nodep->num_after;
1437                 nodep->num_after = middle_end - middle_start + 1 - MASK_BITS;
1438                 s->num_set += nodep->num_after;
1439 
1440                 node_reduce(s, nodep);
1441         }
1442         idx = middle_end + 1;
1443         n -= middle_end - middle_start + 1;
1444 
1445         /* Trailing - bits at and beyond last mask boundary */
1446         assert(n < MASK_BITS);
1447         for (; n > 0; idx++, n--)
1448                 bit_set(s, idx);
1449 }
1450 
1451 /* Clears the bits * in the inclusive range idx through idx + num - 1.  */
1452 void sparsebit_clear_num(struct sparsebit *s,
1453         sparsebit_idx_t start, sparsebit_num_t num)
1454 {
1455         struct node *nodep, *next;
1456         unsigned int n1;
1457         sparsebit_idx_t idx;
1458         sparsebit_num_t n;
1459         sparsebit_idx_t middle_start, middle_end;
1460 
1461         assert(num > 0);
1462         assert(start + num - 1 >= start);
1463 
1464         /* Leading - bits before first mask boundary */
1465         for (idx = start, n = num; n > 0 && idx % MASK_BITS != 0; idx++, n--)
1466                 bit_clear(s, idx);
1467 
1468         /* Middle - bits spanning one or more entire mask */
1469         middle_start = idx;
1470         middle_end = middle_start + (n & -MASK_BITS) - 1;
1471         if (n >= MASK_BITS) {
1472                 nodep = node_split(s, middle_start);
1473 
1474                 /*
1475                  * As needed, split just after end of middle bits.
1476                  * No split needed if end of middle bits is at highest
1477                  * supported bit index.
1478                  */
1479                 if (middle_end + 1 > middle_end)
1480                         (void) node_split(s, middle_end + 1);
1481 
1482                 /* Delete nodes that only describe bits within the middle. */
1483                 for (next = node_next(s, nodep);
1484                         next && (next->idx < middle_end);
1485                         next = node_next(s, nodep)) {
1486                         assert(next->idx + MASK_BITS + next->num_after - 1 <= middle_end);
1487                         node_rm(s, next);
1488                         next = NULL;
1489                 }
1490 
1491                 /* As needed clear each of the mask bits */
1492                 for (n1 = 0; n1 < MASK_BITS; n1++) {
1493                         if (nodep->mask & (1 << n1)) {
1494                                 nodep->mask &= ~(1 << n1);
1495                                 s->num_set--;
1496                         }
1497                 }
1498 
1499                 /* Clear any bits described by num_after */
1500                 s->num_set -= nodep->num_after;
1501                 nodep->num_after = 0;
1502 
1503                 /*
1504                  * Delete the node that describes the beginning of
1505                  * the middle bits and perform any allowed reductions
1506                  * with the nodes prev or next of nodep.
1507                  */
1508                 node_reduce(s, nodep);
1509                 nodep = NULL;
1510         }
1511         idx = middle_end + 1;
1512         n -= middle_end - middle_start + 1;
1513 
1514         /* Trailing - bits at and beyond last mask boundary */
1515         assert(n < MASK_BITS);
1516         for (; n > 0; idx++, n--)
1517                 bit_clear(s, idx);
1518 }
1519 
1520 /* Sets the bit at the index given by idx.  */
1521 void sparsebit_set(struct sparsebit *s, sparsebit_idx_t idx)
1522 {
1523         sparsebit_set_num(s, idx, 1);
1524 }
1525 
1526 /* Clears the bit at the index given by idx.  */
1527 void sparsebit_clear(struct sparsebit *s, sparsebit_idx_t idx)
1528 {
1529         sparsebit_clear_num(s, idx, 1);
1530 }
1531 
1532 /* Sets the bits in the entire addressable range of the sparsebit array.  */
1533 void sparsebit_set_all(struct sparsebit *s)
1534 {
1535         sparsebit_set(s, 0);
1536         sparsebit_set_num(s, 1, ~(sparsebit_idx_t) 0);
1537         assert(sparsebit_all_set(s));
1538 }
1539 
1540 /* Clears the bits in the entire addressable range of the sparsebit array.  */
1541 void sparsebit_clear_all(struct sparsebit *s)
1542 {
1543         sparsebit_clear(s, 0);
1544         sparsebit_clear_num(s, 1, ~(sparsebit_idx_t) 0);
1545         assert(!sparsebit_any_set(s));
1546 }
1547 
1548 static size_t display_range(FILE *stream, sparsebit_idx_t low,
1549         sparsebit_idx_t high, bool prepend_comma_space)
1550 {
1551         char *fmt_str;
1552         size_t sz;
1553 
1554         /* Determine the printf format string */
1555         if (low == high)
1556                 fmt_str = prepend_comma_space ? ", 0x%lx" : "0x%lx";
1557         else
1558                 fmt_str = prepend_comma_space ? ", 0x%lx:0x%lx" : "0x%lx:0x%lx";
1559 
1560         /*
1561          * When stream is NULL, just determine the size of what would
1562          * have been printed, else print the range.
1563          */
1564         if (!stream)
1565                 sz = snprintf(NULL, 0, fmt_str, low, high);
1566         else
1567                 sz = fprintf(stream, fmt_str, low, high);
1568 
1569         return sz;
1570 }
1571 
1572 
1573 /* Dumps to the FILE stream given by stream, the bit settings
1574  * of s.  Each line of output is prefixed with the number of
1575  * spaces given by indent.  The length of each line is implementation
1576  * dependent and does not depend on the indent amount.  The following
1577  * is an example output of a sparsebit array that has bits:
1578  *
1579  *   0x5, 0x8, 0xa:0xe, 0x12
1580  *
1581  * This corresponds to a sparsebit whose bits 5, 8, 10, 11, 12, 13, 14, 18
1582  * are set.  Note that a ':', instead of a '-' is used to specify a range of
1583  * contiguous bits.  This is done because '-' is used to specify command-line
1584  * options, and sometimes ranges are specified as command-line arguments.
1585  */
1586 void sparsebit_dump(FILE *stream, const struct sparsebit *s,
1587         unsigned int indent)
1588 {
1589         size_t current_line_len = 0;
1590         size_t sz;
1591         struct node *nodep;
1592 
1593         if (!sparsebit_any_set(s))
1594                 return;
1595 
1596         /* Display initial indent */
1597         fprintf(stream, "%*s", indent, "");
1598 
1599         /* For each node */
1600         for (nodep = node_first(s); nodep; nodep = node_next(s, nodep)) {
1601                 unsigned int n1;
1602                 sparsebit_idx_t low, high;
1603 
1604                 /* For each group of bits in the mask */
1605                 for (n1 = 0; n1 < MASK_BITS; n1++) {
1606                         if (nodep->mask & (1 << n1)) {
1607                                 low = high = nodep->idx + n1;
1608 
1609                                 for (; n1 < MASK_BITS; n1++) {
1610                                         if (nodep->mask & (1 << n1))
1611                                                 high = nodep->idx + n1;
1612                                         else
1613                                                 break;
1614                                 }
1615 
1616                                 if ((n1 == MASK_BITS) && nodep->num_after)
1617                                         high += nodep->num_after;
1618 
1619                                 /*
1620                                  * How much room will it take to display
1621                                  * this range.
1622                                  */
1623                                 sz = display_range(NULL, low, high,
1624                                         current_line_len != 0);
1625 
1626                                 /*
1627                                  * If there is not enough room, display
1628                                  * a newline plus the indent of the next
1629                                  * line.
1630                                  */
1631                                 if (current_line_len + sz > DUMP_LINE_MAX) {
1632                                         fputs("\n", stream);
1633                                         fprintf(stream, "%*s", indent, "");
1634                                         current_line_len = 0;
1635                                 }
1636 
1637                                 /* Display the range */
1638                                 sz = display_range(stream, low, high,
1639                                         current_line_len != 0);
1640                                 current_line_len += sz;
1641                         }
1642                 }
1643 
1644                 /*
1645                  * If num_after and most significant-bit of mask is not
1646                  * set, then still need to display a range for the bits
1647                  * described by num_after.
1648                  */
1649                 if (!(nodep->mask & (1 << (MASK_BITS - 1))) && nodep->num_after) {
1650                         low = nodep->idx + MASK_BITS;
1651                         high = nodep->idx + MASK_BITS + nodep->num_after - 1;
1652 
1653                         /*
1654                          * How much room will it take to display
1655                          * this range.
1656                          */
1657                         sz = display_range(NULL, low, high,
1658                                 current_line_len != 0);
1659 
1660                         /*
1661                          * If there is not enough room, display
1662                          * a newline plus the indent of the next
1663                          * line.
1664                          */
1665                         if (current_line_len + sz > DUMP_LINE_MAX) {
1666                                 fputs("\n", stream);
1667                                 fprintf(stream, "%*s", indent, "");
1668                                 current_line_len = 0;
1669                         }
1670 
1671                         /* Display the range */
1672                         sz = display_range(stream, low, high,
1673                                 current_line_len != 0);
1674                         current_line_len += sz;
1675                 }
1676         }
1677         fputs("\n", stream);
1678 }
1679 
1680 /* Validates the internal state of the sparsebit array given by
1681  * s.  On error, diagnostic information is printed to stderr and
1682  * abort is called.
1683  */
1684 void sparsebit_validate_internal(const struct sparsebit *s)
1685 {
1686         bool error_detected = false;
1687         struct node *nodep, *prev = NULL;
1688         sparsebit_num_t total_bits_set = 0;
1689         unsigned int n1;
1690 
1691         /* For each node */
1692         for (nodep = node_first(s); nodep;
1693                 prev = nodep, nodep = node_next(s, nodep)) {
1694 
1695                 /*
1696                  * Increase total bits set by the number of bits set
1697                  * in this node.
1698                  */
1699                 for (n1 = 0; n1 < MASK_BITS; n1++)
1700                         if (nodep->mask & (1 << n1))
1701                                 total_bits_set++;
1702 
1703                 total_bits_set += nodep->num_after;
1704 
1705                 /*
1706                  * Arbitrary choice as to whether a mask of 0 is allowed
1707                  * or not.  For diagnostic purposes it is beneficial to
1708                  * have only one valid means to represent a set of bits.
1709                  * To support this an arbitrary choice has been made
1710                  * to not allow a mask of zero.
1711                  */
1712                 if (nodep->mask == 0) {
1713                         fprintf(stderr, "Node mask of zero, "
1714                                 "nodep: %p nodep->mask: 0x%x",
1715                                 nodep, nodep->mask);
1716                         error_detected = true;
1717                         break;
1718                 }
1719 
1720                 /*
1721                  * Validate num_after is not greater than the max index
1722                  * - the number of mask bits.  The num_after member
1723                  * uses 0-based indexing and thus has no value that
1724                  * represents all bits set.  This limitation is handled
1725                  * by requiring a non-zero mask.  With a non-zero mask,
1726                  * MASK_BITS worth of bits are described by the mask,
1727                  * which makes the largest needed num_after equal to:
1728                  *
1729                  *    (~(sparsebit_num_t) 0) - MASK_BITS + 1
1730                  */
1731                 if (nodep->num_after
1732                         > (~(sparsebit_num_t) 0) - MASK_BITS + 1) {
1733                         fprintf(stderr, "num_after too large, "
1734                                 "nodep: %p nodep->num_after: 0x%lx",
1735                                 nodep, nodep->num_after);
1736                         error_detected = true;
1737                         break;
1738                 }
1739 
1740                 /* Validate node index is divisible by the mask size */
1741                 if (nodep->idx % MASK_BITS) {
1742                         fprintf(stderr, "Node index not divisible by "
1743                                 "mask size,\n"
1744                                 "  nodep: %p nodep->idx: 0x%lx "
1745                                 "MASK_BITS: %lu\n",
1746                                 nodep, nodep->idx, MASK_BITS);
1747                         error_detected = true;
1748                         break;
1749                 }
1750 
1751                 /*
1752                  * Validate bits described by node don't wrap beyond the
1753                  * highest supported index.
1754                  */
1755                 if ((nodep->idx + MASK_BITS + nodep->num_after - 1) < nodep->idx) {
1756                         fprintf(stderr, "Bits described by node wrap "
1757                                 "beyond highest supported index,\n"
1758                                 "  nodep: %p nodep->idx: 0x%lx\n"
1759                                 "  MASK_BITS: %lu nodep->num_after: 0x%lx",
1760                                 nodep, nodep->idx, MASK_BITS, nodep->num_after);
1761                         error_detected = true;
1762                         break;
1763                 }
1764 
1765                 /* Check parent pointers. */
1766                 if (nodep->left) {
1767                         if (nodep->left->parent != nodep) {
1768                                 fprintf(stderr, "Left child parent pointer "
1769                                         "doesn't point to this node,\n"
1770                                         "  nodep: %p nodep->left: %p "
1771                                         "nodep->left->parent: %p",
1772                                         nodep, nodep->left,
1773                                         nodep->left->parent);
1774                                 error_detected = true;
1775                                 break;
1776                         }
1777                 }
1778 
1779                 if (nodep->right) {
1780                         if (nodep->right->parent != nodep) {
1781                                 fprintf(stderr, "Right child parent pointer "
1782                                         "doesn't point to this node,\n"
1783                                         "  nodep: %p nodep->right: %p "
1784                                         "nodep->right->parent: %p",
1785                                         nodep, nodep->right,
1786                                         nodep->right->parent);
1787                                 error_detected = true;
1788                                 break;
1789                         }
1790                 }
1791 
1792                 if (!nodep->parent) {
1793                         if (s->root != nodep) {
1794                                 fprintf(stderr, "Unexpected root node, "
1795                                         "s->root: %p nodep: %p",
1796                                         s->root, nodep);
1797                                 error_detected = true;
1798                                 break;
1799                         }
1800                 }
1801 
1802                 if (prev) {
1803                         /*
1804                          * Is index of previous node before index of
1805                          * current node?
1806                          */
1807                         if (prev->idx >= nodep->idx) {
1808                                 fprintf(stderr, "Previous node index "
1809                                         ">= current node index,\n"
1810                                         "  prev: %p prev->idx: 0x%lx\n"
1811                                         "  nodep: %p nodep->idx: 0x%lx",
1812                                         prev, prev->idx, nodep, nodep->idx);
1813                                 error_detected = true;
1814                                 break;
1815                         }
1816 
1817                         /*
1818                          * Nodes occur in asscending order, based on each
1819                          * nodes starting index.
1820                          */
1821                         if ((prev->idx + MASK_BITS + prev->num_after - 1)
1822                                 >= nodep->idx) {
1823                                 fprintf(stderr, "Previous node bit range "
1824                                         "overlap with current node bit range,\n"
1825                                         "  prev: %p prev->idx: 0x%lx "
1826                                         "prev->num_after: 0x%lx\n"
1827                                         "  nodep: %p nodep->idx: 0x%lx "
1828                                         "nodep->num_after: 0x%lx\n"
1829                                         "  MASK_BITS: %lu",
1830                                         prev, prev->idx, prev->num_after,
1831                                         nodep, nodep->idx, nodep->num_after,
1832                                         MASK_BITS);
1833                                 error_detected = true;
1834                                 break;
1835                         }
1836 
1837                         /*
1838                          * When the node has all mask bits set, it shouldn't
1839                          * be adjacent to the last bit described by the
1840                          * previous node.
1841                          */
1842                         if (nodep->mask == ~(mask_t) 0 &&
1843                             prev->idx + MASK_BITS + prev->num_after == nodep->idx) {
1844                                 fprintf(stderr, "Current node has mask with "
1845                                         "all bits set and is adjacent to the "
1846                                         "previous node,\n"
1847                                         "  prev: %p prev->idx: 0x%lx "
1848                                         "prev->num_after: 0x%lx\n"
1849                                         "  nodep: %p nodep->idx: 0x%lx "
1850                                         "nodep->num_after: 0x%lx\n"
1851                                         "  MASK_BITS: %lu",
1852                                         prev, prev->idx, prev->num_after,
1853                                         nodep, nodep->idx, nodep->num_after,
1854                                         MASK_BITS);
1855 
1856                                 error_detected = true;
1857                                 break;
1858                         }
1859                 }
1860         }
1861 
1862         if (!error_detected) {
1863                 /*
1864                  * Is sum of bits set in each node equal to the count
1865                  * of total bits set.
1866                  */
1867                 if (s->num_set != total_bits_set) {
1868                         fprintf(stderr, "Number of bits set mismatch,\n"
1869                                 "  s->num_set: 0x%lx total_bits_set: 0x%lx",
1870                                 s->num_set, total_bits_set);
1871 
1872                         error_detected = true;
1873                 }
1874         }
1875 
1876         if (error_detected) {
1877                 fputs("  dump_internal:\n", stderr);
1878                 sparsebit_dump_internal(stderr, s, 4);
1879                 abort();
1880         }
1881 }
1882 
1883 
1884 #ifdef FUZZ
1885 /* A simple but effective fuzzing driver.  Look for bugs with the help
1886  * of some invariants and of a trivial representation of sparsebit.
1887  * Just use 512 bytes of /dev/zero and /dev/urandom as inputs, and let
1888  * afl-fuzz do the magic. :)
1889  */
1890 
1891 #include <stdlib.h>
1892 
1893 struct range {
1894         sparsebit_idx_t first, last;
1895         bool set;
1896 };
1897 
1898 struct sparsebit *s;
1899 struct range ranges[1000];
1900 int num_ranges;
1901 
1902 static bool get_value(sparsebit_idx_t idx)
1903 {
1904         int i;
1905 
1906         for (i = num_ranges; --i >= 0; )
1907                 if (ranges[i].first <= idx && idx <= ranges[i].last)
1908                         return ranges[i].set;
1909 
1910         return false;
1911 }
1912 
1913 static void operate(int code, sparsebit_idx_t first, sparsebit_idx_t last)
1914 {
1915         sparsebit_num_t num;
1916         sparsebit_idx_t next;
1917 
1918         if (first < last) {
1919                 num = last - first + 1;
1920         } else {
1921                 num = first - last + 1;
1922                 first = last;
1923                 last = first + num - 1;
1924         }
1925 
1926         switch (code) {
1927         case 0:
1928                 sparsebit_set(s, first);
1929                 assert(sparsebit_is_set(s, first));
1930                 assert(!sparsebit_is_clear(s, first));
1931                 assert(sparsebit_any_set(s));
1932                 assert(!sparsebit_all_clear(s));
1933                 if (get_value(first))
1934                         return;
1935                 if (num_ranges == 1000)
1936                         exit(0);
1937                 ranges[num_ranges++] = (struct range)
1938                         { .first = first, .last = first, .set = true };
1939                 break;
1940         case 1:
1941                 sparsebit_clear(s, first);
1942                 assert(!sparsebit_is_set(s, first));
1943                 assert(sparsebit_is_clear(s, first));
1944                 assert(sparsebit_any_clear(s));
1945                 assert(!sparsebit_all_set(s));
1946                 if (!get_value(first))
1947                         return;
1948                 if (num_ranges == 1000)
1949                         exit(0);
1950                 ranges[num_ranges++] = (struct range)
1951                         { .first = first, .last = first, .set = false };
1952                 break;
1953         case 2:
1954                 assert(sparsebit_is_set(s, first) == get_value(first));
1955                 assert(sparsebit_is_clear(s, first) == !get_value(first));
1956                 break;
1957         case 3:
1958                 if (sparsebit_any_set(s))
1959                         assert(get_value(sparsebit_first_set(s)));
1960                 if (sparsebit_any_clear(s))
1961                         assert(!get_value(sparsebit_first_clear(s)));
1962                 sparsebit_set_all(s);
1963                 assert(!sparsebit_any_clear(s));
1964                 assert(sparsebit_all_set(s));
1965                 num_ranges = 0;
1966                 ranges[num_ranges++] = (struct range)
1967                         { .first = 0, .last = ~(sparsebit_idx_t)0, .set = true };
1968                 break;
1969         case 4:
1970                 if (sparsebit_any_set(s))
1971                         assert(get_value(sparsebit_first_set(s)));
1972                 if (sparsebit_any_clear(s))
1973                         assert(!get_value(sparsebit_first_clear(s)));
1974                 sparsebit_clear_all(s);
1975                 assert(!sparsebit_any_set(s));
1976                 assert(sparsebit_all_clear(s));
1977                 num_ranges = 0;
1978                 break;
1979         case 5:
1980                 next = sparsebit_next_set(s, first);
1981                 assert(next == 0 || next > first);
1982                 assert(next == 0 || get_value(next));
1983                 break;
1984         case 6:
1985                 next = sparsebit_next_clear(s, first);
1986                 assert(next == 0 || next > first);
1987                 assert(next == 0 || !get_value(next));
1988                 break;
1989         case 7:
1990                 next = sparsebit_next_clear(s, first);
1991                 if (sparsebit_is_set_num(s, first, num)) {
1992                         assert(next == 0 || next > last);
1993                         if (first)
1994                                 next = sparsebit_next_set(s, first - 1);
1995                         else if (sparsebit_any_set(s))
1996                                 next = sparsebit_first_set(s);
1997                         else
1998                                 return;
1999                         assert(next == first);
2000                 } else {
2001                         assert(sparsebit_is_clear(s, first) || next <= last);
2002                 }
2003                 break;
2004         case 8:
2005                 next = sparsebit_next_set(s, first);
2006                 if (sparsebit_is_clear_num(s, first, num)) {
2007                         assert(next == 0 || next > last);
2008                         if (first)
2009                                 next = sparsebit_next_clear(s, first - 1);
2010                         else if (sparsebit_any_clear(s))
2011                                 next = sparsebit_first_clear(s);
2012                         else
2013                                 return;
2014                         assert(next == first);
2015                 } else {
2016                         assert(sparsebit_is_set(s, first) || next <= last);
2017                 }
2018                 break;
2019         case 9:
2020                 sparsebit_set_num(s, first, num);
2021                 assert(sparsebit_is_set_num(s, first, num));
2022                 assert(!sparsebit_is_clear_num(s, first, num));
2023                 assert(sparsebit_any_set(s));
2024                 assert(!sparsebit_all_clear(s));
2025                 if (num_ranges == 1000)
2026                         exit(0);
2027                 ranges[num_ranges++] = (struct range)
2028                         { .first = first, .last = last, .set = true };
2029                 break;
2030         case 10:
2031                 sparsebit_clear_num(s, first, num);
2032                 assert(!sparsebit_is_set_num(s, first, num));
2033                 assert(sparsebit_is_clear_num(s, first, num));
2034                 assert(sparsebit_any_clear(s));
2035                 assert(!sparsebit_all_set(s));
2036                 if (num_ranges == 1000)
2037                         exit(0);
2038                 ranges[num_ranges++] = (struct range)
2039                         { .first = first, .last = last, .set = false };
2040                 break;
2041         case 11:
2042                 sparsebit_validate_internal(s);
2043                 break;
2044         default:
2045                 break;
2046         }
2047 }
2048 
2049 unsigned char get8(void)
2050 {
2051         int ch;
2052 
2053         ch = getchar();
2054         if (ch == EOF)
2055                 exit(0);
2056         return ch;
2057 }
2058 
2059 uint64_t get64(void)
2060 {
2061         uint64_t x;
2062 
2063         x = get8();
2064         x = (x << 8) | get8();
2065         x = (x << 8) | get8();
2066         x = (x << 8) | get8();
2067         x = (x << 8) | get8();
2068         x = (x << 8) | get8();
2069         x = (x << 8) | get8();
2070         return (x << 8) | get8();
2071 }
2072 
2073 int main(void)
2074 {
2075         s = sparsebit_alloc();
2076         for (;;) {
2077                 uint8_t op = get8() & 0xf;
2078                 uint64_t first = get64();
2079                 uint64_t last = get64();
2080 
2081                 operate(op, first, last);
2082         }
2083 }
2084 #endif
2085 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php