1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * tools/testing/selftests/kvm/lib/x86_64/processor.c 4 * 5 * Copyright (C) 2018, Google LLC. 6 */ 7 8 #include "linux/bitmap.h" 9 #include "test_util.h" 10 #include "kvm_util.h" 11 #include "processor.h" 12 #include "sev.h" 13 14 #ifndef NUM_INTERRUPTS 15 #define NUM_INTERRUPTS 256 16 #endif 17 18 #define KERNEL_CS 0x8 19 #define KERNEL_DS 0x10 20 #define KERNEL_TSS 0x18 21 22 #define MAX_NR_CPUID_ENTRIES 100 23 24 vm_vaddr_t exception_handlers; 25 bool host_cpu_is_amd; 26 bool host_cpu_is_intel; 27 bool is_forced_emulation_enabled; 28 uint64_t guest_tsc_khz; 29 30 static void regs_dump(FILE *stream, struct kvm_regs *regs, uint8_t indent) 31 { 32 fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx " 33 "rcx: 0x%.16llx rdx: 0x%.16llx\n", 34 indent, "", 35 regs->rax, regs->rbx, regs->rcx, regs->rdx); 36 fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx " 37 "rsp: 0x%.16llx rbp: 0x%.16llx\n", 38 indent, "", 39 regs->rsi, regs->rdi, regs->rsp, regs->rbp); 40 fprintf(stream, "%*sr8: 0x%.16llx r9: 0x%.16llx " 41 "r10: 0x%.16llx r11: 0x%.16llx\n", 42 indent, "", 43 regs->r8, regs->r9, regs->r10, regs->r11); 44 fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx " 45 "r14: 0x%.16llx r15: 0x%.16llx\n", 46 indent, "", 47 regs->r12, regs->r13, regs->r14, regs->r15); 48 fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n", 49 indent, "", 50 regs->rip, regs->rflags); 51 } 52 53 static void segment_dump(FILE *stream, struct kvm_segment *segment, 54 uint8_t indent) 55 { 56 fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x " 57 "selector: 0x%.4x type: 0x%.2x\n", 58 indent, "", segment->base, segment->limit, 59 segment->selector, segment->type); 60 fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x " 61 "db: 0x%.2x s: 0x%.2x l: 0x%.2x\n", 62 indent, "", segment->present, segment->dpl, 63 segment->db, segment->s, segment->l); 64 fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x " 65 "unusable: 0x%.2x padding: 0x%.2x\n", 66 indent, "", segment->g, segment->avl, 67 segment->unusable, segment->padding); 68 } 69 70 static void dtable_dump(FILE *stream, struct kvm_dtable *dtable, 71 uint8_t indent) 72 { 73 fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x " 74 "padding: 0x%.4x 0x%.4x 0x%.4x\n", 75 indent, "", dtable->base, dtable->limit, 76 dtable->padding[0], dtable->padding[1], dtable->padding[2]); 77 } 78 79 static void sregs_dump(FILE *stream, struct kvm_sregs *sregs, uint8_t indent) 80 { 81 unsigned int i; 82 83 fprintf(stream, "%*scs:\n", indent, ""); 84 segment_dump(stream, &sregs->cs, indent + 2); 85 fprintf(stream, "%*sds:\n", indent, ""); 86 segment_dump(stream, &sregs->ds, indent + 2); 87 fprintf(stream, "%*ses:\n", indent, ""); 88 segment_dump(stream, &sregs->es, indent + 2); 89 fprintf(stream, "%*sfs:\n", indent, ""); 90 segment_dump(stream, &sregs->fs, indent + 2); 91 fprintf(stream, "%*sgs:\n", indent, ""); 92 segment_dump(stream, &sregs->gs, indent + 2); 93 fprintf(stream, "%*sss:\n", indent, ""); 94 segment_dump(stream, &sregs->ss, indent + 2); 95 fprintf(stream, "%*str:\n", indent, ""); 96 segment_dump(stream, &sregs->tr, indent + 2); 97 fprintf(stream, "%*sldt:\n", indent, ""); 98 segment_dump(stream, &sregs->ldt, indent + 2); 99 100 fprintf(stream, "%*sgdt:\n", indent, ""); 101 dtable_dump(stream, &sregs->gdt, indent + 2); 102 fprintf(stream, "%*sidt:\n", indent, ""); 103 dtable_dump(stream, &sregs->idt, indent + 2); 104 105 fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx " 106 "cr3: 0x%.16llx cr4: 0x%.16llx\n", 107 indent, "", 108 sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4); 109 fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx " 110 "apic_base: 0x%.16llx\n", 111 indent, "", 112 sregs->cr8, sregs->efer, sregs->apic_base); 113 114 fprintf(stream, "%*sinterrupt_bitmap:\n", indent, ""); 115 for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) { 116 fprintf(stream, "%*s%.16llx\n", indent + 2, "", 117 sregs->interrupt_bitmap[i]); 118 } 119 } 120 121 bool kvm_is_tdp_enabled(void) 122 { 123 if (host_cpu_is_intel) 124 return get_kvm_intel_param_bool("ept"); 125 else 126 return get_kvm_amd_param_bool("npt"); 127 } 128 129 void virt_arch_pgd_alloc(struct kvm_vm *vm) 130 { 131 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " 132 "unknown or unsupported guest mode, mode: 0x%x", vm->mode); 133 134 /* If needed, create page map l4 table. */ 135 if (!vm->pgd_created) { 136 vm->pgd = vm_alloc_page_table(vm); 137 vm->pgd_created = true; 138 } 139 } 140 141 static void *virt_get_pte(struct kvm_vm *vm, uint64_t *parent_pte, 142 uint64_t vaddr, int level) 143 { 144 uint64_t pt_gpa = PTE_GET_PA(*parent_pte); 145 uint64_t *page_table = addr_gpa2hva(vm, pt_gpa); 146 int index = (vaddr >> PG_LEVEL_SHIFT(level)) & 0x1ffu; 147 148 TEST_ASSERT((*parent_pte & PTE_PRESENT_MASK) || parent_pte == &vm->pgd, 149 "Parent PTE (level %d) not PRESENT for gva: 0x%08lx", 150 level + 1, vaddr); 151 152 return &page_table[index]; 153 } 154 155 static uint64_t *virt_create_upper_pte(struct kvm_vm *vm, 156 uint64_t *parent_pte, 157 uint64_t vaddr, 158 uint64_t paddr, 159 int current_level, 160 int target_level) 161 { 162 uint64_t *pte = virt_get_pte(vm, parent_pte, vaddr, current_level); 163 164 paddr = vm_untag_gpa(vm, paddr); 165 166 if (!(*pte & PTE_PRESENT_MASK)) { 167 *pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK; 168 if (current_level == target_level) 169 *pte |= PTE_LARGE_MASK | (paddr & PHYSICAL_PAGE_MASK); 170 else 171 *pte |= vm_alloc_page_table(vm) & PHYSICAL_PAGE_MASK; 172 } else { 173 /* 174 * Entry already present. Assert that the caller doesn't want 175 * a hugepage at this level, and that there isn't a hugepage at 176 * this level. 177 */ 178 TEST_ASSERT(current_level != target_level, 179 "Cannot create hugepage at level: %u, vaddr: 0x%lx", 180 current_level, vaddr); 181 TEST_ASSERT(!(*pte & PTE_LARGE_MASK), 182 "Cannot create page table at level: %u, vaddr: 0x%lx", 183 current_level, vaddr); 184 } 185 return pte; 186 } 187 188 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level) 189 { 190 const uint64_t pg_size = PG_LEVEL_SIZE(level); 191 uint64_t *pml4e, *pdpe, *pde; 192 uint64_t *pte; 193 194 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, 195 "Unknown or unsupported guest mode, mode: 0x%x", vm->mode); 196 197 TEST_ASSERT((vaddr % pg_size) == 0, 198 "Virtual address not aligned,\n" 199 "vaddr: 0x%lx page size: 0x%lx", vaddr, pg_size); 200 TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)), 201 "Invalid virtual address, vaddr: 0x%lx", vaddr); 202 TEST_ASSERT((paddr % pg_size) == 0, 203 "Physical address not aligned,\n" 204 " paddr: 0x%lx page size: 0x%lx", paddr, pg_size); 205 TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn, 206 "Physical address beyond maximum supported,\n" 207 " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x", 208 paddr, vm->max_gfn, vm->page_size); 209 TEST_ASSERT(vm_untag_gpa(vm, paddr) == paddr, 210 "Unexpected bits in paddr: %lx", paddr); 211 212 /* 213 * Allocate upper level page tables, if not already present. Return 214 * early if a hugepage was created. 215 */ 216 pml4e = virt_create_upper_pte(vm, &vm->pgd, vaddr, paddr, PG_LEVEL_512G, level); 217 if (*pml4e & PTE_LARGE_MASK) 218 return; 219 220 pdpe = virt_create_upper_pte(vm, pml4e, vaddr, paddr, PG_LEVEL_1G, level); 221 if (*pdpe & PTE_LARGE_MASK) 222 return; 223 224 pde = virt_create_upper_pte(vm, pdpe, vaddr, paddr, PG_LEVEL_2M, level); 225 if (*pde & PTE_LARGE_MASK) 226 return; 227 228 /* Fill in page table entry. */ 229 pte = virt_get_pte(vm, pde, vaddr, PG_LEVEL_4K); 230 TEST_ASSERT(!(*pte & PTE_PRESENT_MASK), 231 "PTE already present for 4k page at vaddr: 0x%lx", vaddr); 232 *pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK | (paddr & PHYSICAL_PAGE_MASK); 233 234 /* 235 * Neither SEV nor TDX supports shared page tables, so only the final 236 * leaf PTE needs manually set the C/S-bit. 237 */ 238 if (vm_is_gpa_protected(vm, paddr)) 239 *pte |= vm->arch.c_bit; 240 else 241 *pte |= vm->arch.s_bit; 242 } 243 244 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr) 245 { 246 __virt_pg_map(vm, vaddr, paddr, PG_LEVEL_4K); 247 } 248 249 void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 250 uint64_t nr_bytes, int level) 251 { 252 uint64_t pg_size = PG_LEVEL_SIZE(level); 253 uint64_t nr_pages = nr_bytes / pg_size; 254 int i; 255 256 TEST_ASSERT(nr_bytes % pg_size == 0, 257 "Region size not aligned: nr_bytes: 0x%lx, page size: 0x%lx", 258 nr_bytes, pg_size); 259 260 for (i = 0; i < nr_pages; i++) { 261 __virt_pg_map(vm, vaddr, paddr, level); 262 263 vaddr += pg_size; 264 paddr += pg_size; 265 } 266 } 267 268 static bool vm_is_target_pte(uint64_t *pte, int *level, int current_level) 269 { 270 if (*pte & PTE_LARGE_MASK) { 271 TEST_ASSERT(*level == PG_LEVEL_NONE || 272 *level == current_level, 273 "Unexpected hugepage at level %d", current_level); 274 *level = current_level; 275 } 276 277 return *level == current_level; 278 } 279 280 uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr, 281 int *level) 282 { 283 uint64_t *pml4e, *pdpe, *pde; 284 285 TEST_ASSERT(!vm->arch.is_pt_protected, 286 "Walking page tables of protected guests is impossible"); 287 288 TEST_ASSERT(*level >= PG_LEVEL_NONE && *level < PG_LEVEL_NUM, 289 "Invalid PG_LEVEL_* '%d'", *level); 290 291 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " 292 "unknown or unsupported guest mode, mode: 0x%x", vm->mode); 293 TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, 294 (vaddr >> vm->page_shift)), 295 "Invalid virtual address, vaddr: 0x%lx", 296 vaddr); 297 /* 298 * Based on the mode check above there are 48 bits in the vaddr, so 299 * shift 16 to sign extend the last bit (bit-47), 300 */ 301 TEST_ASSERT(vaddr == (((int64_t)vaddr << 16) >> 16), 302 "Canonical check failed. The virtual address is invalid."); 303 304 pml4e = virt_get_pte(vm, &vm->pgd, vaddr, PG_LEVEL_512G); 305 if (vm_is_target_pte(pml4e, level, PG_LEVEL_512G)) 306 return pml4e; 307 308 pdpe = virt_get_pte(vm, pml4e, vaddr, PG_LEVEL_1G); 309 if (vm_is_target_pte(pdpe, level, PG_LEVEL_1G)) 310 return pdpe; 311 312 pde = virt_get_pte(vm, pdpe, vaddr, PG_LEVEL_2M); 313 if (vm_is_target_pte(pde, level, PG_LEVEL_2M)) 314 return pde; 315 316 return virt_get_pte(vm, pde, vaddr, PG_LEVEL_4K); 317 } 318 319 uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr) 320 { 321 int level = PG_LEVEL_4K; 322 323 return __vm_get_page_table_entry(vm, vaddr, &level); 324 } 325 326 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) 327 { 328 uint64_t *pml4e, *pml4e_start; 329 uint64_t *pdpe, *pdpe_start; 330 uint64_t *pde, *pde_start; 331 uint64_t *pte, *pte_start; 332 333 if (!vm->pgd_created) 334 return; 335 336 fprintf(stream, "%*s " 337 " no\n", indent, ""); 338 fprintf(stream, "%*s index hvaddr gpaddr " 339 "addr w exec dirty\n", 340 indent, ""); 341 pml4e_start = (uint64_t *) addr_gpa2hva(vm, vm->pgd); 342 for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) { 343 pml4e = &pml4e_start[n1]; 344 if (!(*pml4e & PTE_PRESENT_MASK)) 345 continue; 346 fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10llx %u " 347 " %u\n", 348 indent, "", 349 pml4e - pml4e_start, pml4e, 350 addr_hva2gpa(vm, pml4e), PTE_GET_PFN(*pml4e), 351 !!(*pml4e & PTE_WRITABLE_MASK), !!(*pml4e & PTE_NX_MASK)); 352 353 pdpe_start = addr_gpa2hva(vm, *pml4e & PHYSICAL_PAGE_MASK); 354 for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) { 355 pdpe = &pdpe_start[n2]; 356 if (!(*pdpe & PTE_PRESENT_MASK)) 357 continue; 358 fprintf(stream, "%*spdpe 0x%-3zx %p 0x%-12lx 0x%-10llx " 359 "%u %u\n", 360 indent, "", 361 pdpe - pdpe_start, pdpe, 362 addr_hva2gpa(vm, pdpe), 363 PTE_GET_PFN(*pdpe), !!(*pdpe & PTE_WRITABLE_MASK), 364 !!(*pdpe & PTE_NX_MASK)); 365 366 pde_start = addr_gpa2hva(vm, *pdpe & PHYSICAL_PAGE_MASK); 367 for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) { 368 pde = &pde_start[n3]; 369 if (!(*pde & PTE_PRESENT_MASK)) 370 continue; 371 fprintf(stream, "%*spde 0x%-3zx %p " 372 "0x%-12lx 0x%-10llx %u %u\n", 373 indent, "", pde - pde_start, pde, 374 addr_hva2gpa(vm, pde), 375 PTE_GET_PFN(*pde), !!(*pde & PTE_WRITABLE_MASK), 376 !!(*pde & PTE_NX_MASK)); 377 378 pte_start = addr_gpa2hva(vm, *pde & PHYSICAL_PAGE_MASK); 379 for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) { 380 pte = &pte_start[n4]; 381 if (!(*pte & PTE_PRESENT_MASK)) 382 continue; 383 fprintf(stream, "%*spte 0x%-3zx %p " 384 "0x%-12lx 0x%-10llx %u %u " 385 " %u 0x%-10lx\n", 386 indent, "", 387 pte - pte_start, pte, 388 addr_hva2gpa(vm, pte), 389 PTE_GET_PFN(*pte), 390 !!(*pte & PTE_WRITABLE_MASK), 391 !!(*pte & PTE_NX_MASK), 392 !!(*pte & PTE_DIRTY_MASK), 393 ((uint64_t) n1 << 27) 394 | ((uint64_t) n2 << 18) 395 | ((uint64_t) n3 << 9) 396 | ((uint64_t) n4)); 397 } 398 } 399 } 400 } 401 } 402 403 /* 404 * Set Unusable Segment 405 * 406 * Input Args: None 407 * 408 * Output Args: 409 * segp - Pointer to segment register 410 * 411 * Return: None 412 * 413 * Sets the segment register pointed to by @segp to an unusable state. 414 */ 415 static void kvm_seg_set_unusable(struct kvm_segment *segp) 416 { 417 memset(segp, 0, sizeof(*segp)); 418 segp->unusable = true; 419 } 420 421 static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp) 422 { 423 void *gdt = addr_gva2hva(vm, vm->arch.gdt); 424 struct desc64 *desc = gdt + (segp->selector >> 3) * 8; 425 426 desc->limit0 = segp->limit & 0xFFFF; 427 desc->base0 = segp->base & 0xFFFF; 428 desc->base1 = segp->base >> 16; 429 desc->type = segp->type; 430 desc->s = segp->s; 431 desc->dpl = segp->dpl; 432 desc->p = segp->present; 433 desc->limit1 = segp->limit >> 16; 434 desc->avl = segp->avl; 435 desc->l = segp->l; 436 desc->db = segp->db; 437 desc->g = segp->g; 438 desc->base2 = segp->base >> 24; 439 if (!segp->s) 440 desc->base3 = segp->base >> 32; 441 } 442 443 static void kvm_seg_set_kernel_code_64bit(struct kvm_segment *segp) 444 { 445 memset(segp, 0, sizeof(*segp)); 446 segp->selector = KERNEL_CS; 447 segp->limit = 0xFFFFFFFFu; 448 segp->s = 0x1; /* kTypeCodeData */ 449 segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed 450 * | kFlagCodeReadable 451 */ 452 segp->g = true; 453 segp->l = true; 454 segp->present = 1; 455 } 456 457 static void kvm_seg_set_kernel_data_64bit(struct kvm_segment *segp) 458 { 459 memset(segp, 0, sizeof(*segp)); 460 segp->selector = KERNEL_DS; 461 segp->limit = 0xFFFFFFFFu; 462 segp->s = 0x1; /* kTypeCodeData */ 463 segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed 464 * | kFlagDataWritable 465 */ 466 segp->g = true; 467 segp->present = true; 468 } 469 470 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva) 471 { 472 int level = PG_LEVEL_NONE; 473 uint64_t *pte = __vm_get_page_table_entry(vm, gva, &level); 474 475 TEST_ASSERT(*pte & PTE_PRESENT_MASK, 476 "Leaf PTE not PRESENT for gva: 0x%08lx", gva); 477 478 /* 479 * No need for a hugepage mask on the PTE, x86-64 requires the "unused" 480 * address bits to be zero. 481 */ 482 return vm_untag_gpa(vm, PTE_GET_PA(*pte)) | (gva & ~HUGEPAGE_MASK(level)); 483 } 484 485 static void kvm_seg_set_tss_64bit(vm_vaddr_t base, struct kvm_segment *segp) 486 { 487 memset(segp, 0, sizeof(*segp)); 488 segp->base = base; 489 segp->limit = 0x67; 490 segp->selector = KERNEL_TSS; 491 segp->type = 0xb; 492 segp->present = 1; 493 } 494 495 static void vcpu_init_sregs(struct kvm_vm *vm, struct kvm_vcpu *vcpu) 496 { 497 struct kvm_sregs sregs; 498 499 TEST_ASSERT_EQ(vm->mode, VM_MODE_PXXV48_4K); 500 501 /* Set mode specific system register values. */ 502 vcpu_sregs_get(vcpu, &sregs); 503 504 sregs.idt.base = vm->arch.idt; 505 sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1; 506 sregs.gdt.base = vm->arch.gdt; 507 sregs.gdt.limit = getpagesize() - 1; 508 509 sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG; 510 sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR; 511 sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX); 512 513 kvm_seg_set_unusable(&sregs.ldt); 514 kvm_seg_set_kernel_code_64bit(&sregs.cs); 515 kvm_seg_set_kernel_data_64bit(&sregs.ds); 516 kvm_seg_set_kernel_data_64bit(&sregs.es); 517 kvm_seg_set_kernel_data_64bit(&sregs.gs); 518 kvm_seg_set_tss_64bit(vm->arch.tss, &sregs.tr); 519 520 sregs.cr3 = vm->pgd; 521 vcpu_sregs_set(vcpu, &sregs); 522 } 523 524 static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr, 525 int dpl, unsigned short selector) 526 { 527 struct idt_entry *base = 528 (struct idt_entry *)addr_gva2hva(vm, vm->arch.idt); 529 struct idt_entry *e = &base[vector]; 530 531 memset(e, 0, sizeof(*e)); 532 e->offset0 = addr; 533 e->selector = selector; 534 e->ist = 0; 535 e->type = 14; 536 e->dpl = dpl; 537 e->p = 1; 538 e->offset1 = addr >> 16; 539 e->offset2 = addr >> 32; 540 } 541 542 static bool kvm_fixup_exception(struct ex_regs *regs) 543 { 544 if (regs->r9 != KVM_EXCEPTION_MAGIC || regs->rip != regs->r10) 545 return false; 546 547 if (regs->vector == DE_VECTOR) 548 return false; 549 550 regs->rip = regs->r11; 551 regs->r9 = regs->vector; 552 regs->r10 = regs->error_code; 553 return true; 554 } 555 556 void route_exception(struct ex_regs *regs) 557 { 558 typedef void(*handler)(struct ex_regs *); 559 handler *handlers = (handler *)exception_handlers; 560 561 if (handlers && handlers[regs->vector]) { 562 handlers[regs->vector](regs); 563 return; 564 } 565 566 if (kvm_fixup_exception(regs)) 567 return; 568 569 ucall_assert(UCALL_UNHANDLED, 570 "Unhandled exception in guest", __FILE__, __LINE__, 571 "Unhandled exception '0x%lx' at guest RIP '0x%lx'", 572 regs->vector, regs->rip); 573 } 574 575 static void vm_init_descriptor_tables(struct kvm_vm *vm) 576 { 577 extern void *idt_handlers; 578 struct kvm_segment seg; 579 int i; 580 581 vm->arch.gdt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA); 582 vm->arch.idt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA); 583 vm->handlers = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA); 584 vm->arch.tss = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA); 585 586 /* Handlers have the same address in both address spaces.*/ 587 for (i = 0; i < NUM_INTERRUPTS; i++) 588 set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0, KERNEL_CS); 589 590 *(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers; 591 592 kvm_seg_set_kernel_code_64bit(&seg); 593 kvm_seg_fill_gdt_64bit(vm, &seg); 594 595 kvm_seg_set_kernel_data_64bit(&seg); 596 kvm_seg_fill_gdt_64bit(vm, &seg); 597 598 kvm_seg_set_tss_64bit(vm->arch.tss, &seg); 599 kvm_seg_fill_gdt_64bit(vm, &seg); 600 } 601 602 void vm_install_exception_handler(struct kvm_vm *vm, int vector, 603 void (*handler)(struct ex_regs *)) 604 { 605 vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers); 606 607 handlers[vector] = (vm_vaddr_t)handler; 608 } 609 610 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu) 611 { 612 struct ucall uc; 613 614 if (get_ucall(vcpu, &uc) == UCALL_UNHANDLED) 615 REPORT_GUEST_ASSERT(uc); 616 } 617 618 void kvm_arch_vm_post_create(struct kvm_vm *vm) 619 { 620 int r; 621 622 TEST_ASSERT(kvm_has_cap(KVM_CAP_GET_TSC_KHZ), 623 "Require KVM_GET_TSC_KHZ to provide udelay() to guest."); 624 625 vm_create_irqchip(vm); 626 vm_init_descriptor_tables(vm); 627 628 sync_global_to_guest(vm, host_cpu_is_intel); 629 sync_global_to_guest(vm, host_cpu_is_amd); 630 sync_global_to_guest(vm, is_forced_emulation_enabled); 631 632 if (vm->type == KVM_X86_SEV_VM || vm->type == KVM_X86_SEV_ES_VM) { 633 struct kvm_sev_init init = { 0 }; 634 635 vm_sev_ioctl(vm, KVM_SEV_INIT2, &init); 636 } 637 638 r = __vm_ioctl(vm, KVM_GET_TSC_KHZ, NULL); 639 TEST_ASSERT(r > 0, "KVM_GET_TSC_KHZ did not provide a valid TSC frequency."); 640 guest_tsc_khz = r; 641 sync_global_to_guest(vm, guest_tsc_khz); 642 } 643 644 void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code) 645 { 646 struct kvm_regs regs; 647 648 vcpu_regs_get(vcpu, ®s); 649 regs.rip = (unsigned long) guest_code; 650 vcpu_regs_set(vcpu, ®s); 651 } 652 653 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id) 654 { 655 struct kvm_mp_state mp_state; 656 struct kvm_regs regs; 657 vm_vaddr_t stack_vaddr; 658 struct kvm_vcpu *vcpu; 659 660 stack_vaddr = __vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(), 661 DEFAULT_GUEST_STACK_VADDR_MIN, 662 MEM_REGION_DATA); 663 664 stack_vaddr += DEFAULT_STACK_PGS * getpagesize(); 665 666 /* 667 * Align stack to match calling sequence requirements in section "The 668 * Stack Frame" of the System V ABI AMD64 Architecture Processor 669 * Supplement, which requires the value (%rsp + 8) to be a multiple of 670 * 16 when control is transferred to the function entry point. 671 * 672 * If this code is ever used to launch a vCPU with 32-bit entry point it 673 * may need to subtract 4 bytes instead of 8 bytes. 674 */ 675 TEST_ASSERT(IS_ALIGNED(stack_vaddr, PAGE_SIZE), 676 "__vm_vaddr_alloc() did not provide a page-aligned address"); 677 stack_vaddr -= 8; 678 679 vcpu = __vm_vcpu_add(vm, vcpu_id); 680 vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid()); 681 vcpu_init_sregs(vm, vcpu); 682 683 /* Setup guest general purpose registers */ 684 vcpu_regs_get(vcpu, ®s); 685 regs.rflags = regs.rflags | 0x2; 686 regs.rsp = stack_vaddr; 687 vcpu_regs_set(vcpu, ®s); 688 689 /* Setup the MP state */ 690 mp_state.mp_state = 0; 691 vcpu_mp_state_set(vcpu, &mp_state); 692 693 return vcpu; 694 } 695 696 struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id) 697 { 698 struct kvm_vcpu *vcpu = __vm_vcpu_add(vm, vcpu_id); 699 700 vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid()); 701 702 return vcpu; 703 } 704 705 void vcpu_arch_free(struct kvm_vcpu *vcpu) 706 { 707 if (vcpu->cpuid) 708 free(vcpu->cpuid); 709 } 710 711 /* Do not use kvm_supported_cpuid directly except for validity checks. */ 712 static void *kvm_supported_cpuid; 713 714 const struct kvm_cpuid2 *kvm_get_supported_cpuid(void) 715 { 716 int kvm_fd; 717 718 if (kvm_supported_cpuid) 719 return kvm_supported_cpuid; 720 721 kvm_supported_cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES); 722 kvm_fd = open_kvm_dev_path_or_exit(); 723 724 kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID, 725 (struct kvm_cpuid2 *)kvm_supported_cpuid); 726 727 close(kvm_fd); 728 return kvm_supported_cpuid; 729 } 730 731 static uint32_t __kvm_cpu_has(const struct kvm_cpuid2 *cpuid, 732 uint32_t function, uint32_t index, 733 uint8_t reg, uint8_t lo, uint8_t hi) 734 { 735 const struct kvm_cpuid_entry2 *entry; 736 int i; 737 738 for (i = 0; i < cpuid->nent; i++) { 739 entry = &cpuid->entries[i]; 740 741 /* 742 * The output registers in kvm_cpuid_entry2 are in alphabetical 743 * order, but kvm_x86_cpu_feature matches that mess, so yay 744 * pointer shenanigans! 745 */ 746 if (entry->function == function && entry->index == index) 747 return ((&entry->eax)[reg] & GENMASK(hi, lo)) >> lo; 748 } 749 750 return 0; 751 } 752 753 bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid, 754 struct kvm_x86_cpu_feature feature) 755 { 756 return __kvm_cpu_has(cpuid, feature.function, feature.index, 757 feature.reg, feature.bit, feature.bit); 758 } 759 760 uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid, 761 struct kvm_x86_cpu_property property) 762 { 763 return __kvm_cpu_has(cpuid, property.function, property.index, 764 property.reg, property.lo_bit, property.hi_bit); 765 } 766 767 uint64_t kvm_get_feature_msr(uint64_t msr_index) 768 { 769 struct { 770 struct kvm_msrs header; 771 struct kvm_msr_entry entry; 772 } buffer = {}; 773 int r, kvm_fd; 774 775 buffer.header.nmsrs = 1; 776 buffer.entry.index = msr_index; 777 kvm_fd = open_kvm_dev_path_or_exit(); 778 779 r = __kvm_ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header); 780 TEST_ASSERT(r == 1, KVM_IOCTL_ERROR(KVM_GET_MSRS, r)); 781 782 close(kvm_fd); 783 return buffer.entry.data; 784 } 785 786 void __vm_xsave_require_permission(uint64_t xfeature, const char *name) 787 { 788 int kvm_fd; 789 u64 bitmask; 790 long rc; 791 struct kvm_device_attr attr = { 792 .group = 0, 793 .attr = KVM_X86_XCOMP_GUEST_SUPP, 794 .addr = (unsigned long) &bitmask, 795 }; 796 797 TEST_ASSERT(!kvm_supported_cpuid, 798 "kvm_get_supported_cpuid() cannot be used before ARCH_REQ_XCOMP_GUEST_PERM"); 799 800 TEST_ASSERT(is_power_of_2(xfeature), 801 "Dynamic XFeatures must be enabled one at a time"); 802 803 kvm_fd = open_kvm_dev_path_or_exit(); 804 rc = __kvm_ioctl(kvm_fd, KVM_GET_DEVICE_ATTR, &attr); 805 close(kvm_fd); 806 807 if (rc == -1 && (errno == ENXIO || errno == EINVAL)) 808 __TEST_REQUIRE(0, "KVM_X86_XCOMP_GUEST_SUPP not supported"); 809 810 TEST_ASSERT(rc == 0, "KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) error: %ld", rc); 811 812 __TEST_REQUIRE(bitmask & xfeature, 813 "Required XSAVE feature '%s' not supported", name); 814 815 TEST_REQUIRE(!syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, ilog2(xfeature))); 816 817 rc = syscall(SYS_arch_prctl, ARCH_GET_XCOMP_GUEST_PERM, &bitmask); 818 TEST_ASSERT(rc == 0, "prctl(ARCH_GET_XCOMP_GUEST_PERM) error: %ld", rc); 819 TEST_ASSERT(bitmask & xfeature, 820 "'%s' (0x%lx) not permitted after prctl(ARCH_REQ_XCOMP_GUEST_PERM) permitted=0x%lx", 821 name, xfeature, bitmask); 822 } 823 824 void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid) 825 { 826 TEST_ASSERT(cpuid != vcpu->cpuid, "@cpuid can't be the vCPU's CPUID"); 827 828 /* Allow overriding the default CPUID. */ 829 if (vcpu->cpuid && vcpu->cpuid->nent < cpuid->nent) { 830 free(vcpu->cpuid); 831 vcpu->cpuid = NULL; 832 } 833 834 if (!vcpu->cpuid) 835 vcpu->cpuid = allocate_kvm_cpuid2(cpuid->nent); 836 837 memcpy(vcpu->cpuid, cpuid, kvm_cpuid2_size(cpuid->nent)); 838 vcpu_set_cpuid(vcpu); 839 } 840 841 void vcpu_set_cpuid_property(struct kvm_vcpu *vcpu, 842 struct kvm_x86_cpu_property property, 843 uint32_t value) 844 { 845 struct kvm_cpuid_entry2 *entry; 846 847 entry = __vcpu_get_cpuid_entry(vcpu, property.function, property.index); 848 849 (&entry->eax)[property.reg] &= ~GENMASK(property.hi_bit, property.lo_bit); 850 (&entry->eax)[property.reg] |= value << property.lo_bit; 851 852 vcpu_set_cpuid(vcpu); 853 854 /* Sanity check that @value doesn't exceed the bounds in any way. */ 855 TEST_ASSERT_EQ(kvm_cpuid_property(vcpu->cpuid, property), value); 856 } 857 858 void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function) 859 { 860 struct kvm_cpuid_entry2 *entry = vcpu_get_cpuid_entry(vcpu, function); 861 862 entry->eax = 0; 863 entry->ebx = 0; 864 entry->ecx = 0; 865 entry->edx = 0; 866 vcpu_set_cpuid(vcpu); 867 } 868 869 void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu, 870 struct kvm_x86_cpu_feature feature, 871 bool set) 872 { 873 struct kvm_cpuid_entry2 *entry; 874 u32 *reg; 875 876 entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index); 877 reg = (&entry->eax) + feature.reg; 878 879 if (set) 880 *reg |= BIT(feature.bit); 881 else 882 *reg &= ~BIT(feature.bit); 883 884 vcpu_set_cpuid(vcpu); 885 } 886 887 uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index) 888 { 889 struct { 890 struct kvm_msrs header; 891 struct kvm_msr_entry entry; 892 } buffer = {}; 893 894 buffer.header.nmsrs = 1; 895 buffer.entry.index = msr_index; 896 897 vcpu_msrs_get(vcpu, &buffer.header); 898 899 return buffer.entry.data; 900 } 901 902 int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value) 903 { 904 struct { 905 struct kvm_msrs header; 906 struct kvm_msr_entry entry; 907 } buffer = {}; 908 909 memset(&buffer, 0, sizeof(buffer)); 910 buffer.header.nmsrs = 1; 911 buffer.entry.index = msr_index; 912 buffer.entry.data = msr_value; 913 914 return __vcpu_ioctl(vcpu, KVM_SET_MSRS, &buffer.header); 915 } 916 917 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...) 918 { 919 va_list ap; 920 struct kvm_regs regs; 921 922 TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n" 923 " num: %u", 924 num); 925 926 va_start(ap, num); 927 vcpu_regs_get(vcpu, ®s); 928 929 if (num >= 1) 930 regs.rdi = va_arg(ap, uint64_t); 931 932 if (num >= 2) 933 regs.rsi = va_arg(ap, uint64_t); 934 935 if (num >= 3) 936 regs.rdx = va_arg(ap, uint64_t); 937 938 if (num >= 4) 939 regs.rcx = va_arg(ap, uint64_t); 940 941 if (num >= 5) 942 regs.r8 = va_arg(ap, uint64_t); 943 944 if (num >= 6) 945 regs.r9 = va_arg(ap, uint64_t); 946 947 vcpu_regs_set(vcpu, ®s); 948 va_end(ap); 949 } 950 951 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent) 952 { 953 struct kvm_regs regs; 954 struct kvm_sregs sregs; 955 956 fprintf(stream, "%*svCPU ID: %u\n", indent, "", vcpu->id); 957 958 fprintf(stream, "%*sregs:\n", indent + 2, ""); 959 vcpu_regs_get(vcpu, ®s); 960 regs_dump(stream, ®s, indent + 4); 961 962 fprintf(stream, "%*ssregs:\n", indent + 2, ""); 963 vcpu_sregs_get(vcpu, &sregs); 964 sregs_dump(stream, &sregs, indent + 4); 965 } 966 967 static struct kvm_msr_list *__kvm_get_msr_index_list(bool feature_msrs) 968 { 969 struct kvm_msr_list *list; 970 struct kvm_msr_list nmsrs; 971 int kvm_fd, r; 972 973 kvm_fd = open_kvm_dev_path_or_exit(); 974 975 nmsrs.nmsrs = 0; 976 if (!feature_msrs) 977 r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs); 978 else 979 r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, &nmsrs); 980 981 TEST_ASSERT(r == -1 && errno == E2BIG, 982 "Expected -E2BIG, got rc: %i errno: %i (%s)", 983 r, errno, strerror(errno)); 984 985 list = malloc(sizeof(*list) + nmsrs.nmsrs * sizeof(list->indices[0])); 986 TEST_ASSERT(list, "-ENOMEM when allocating MSR index list"); 987 list->nmsrs = nmsrs.nmsrs; 988 989 if (!feature_msrs) 990 kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list); 991 else 992 kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, list); 993 close(kvm_fd); 994 995 TEST_ASSERT(list->nmsrs == nmsrs.nmsrs, 996 "Number of MSRs in list changed, was %d, now %d", 997 nmsrs.nmsrs, list->nmsrs); 998 return list; 999 } 1000 1001 const struct kvm_msr_list *kvm_get_msr_index_list(void) 1002 { 1003 static const struct kvm_msr_list *list; 1004 1005 if (!list) 1006 list = __kvm_get_msr_index_list(false); 1007 return list; 1008 } 1009 1010 1011 const struct kvm_msr_list *kvm_get_feature_msr_index_list(void) 1012 { 1013 static const struct kvm_msr_list *list; 1014 1015 if (!list) 1016 list = __kvm_get_msr_index_list(true); 1017 return list; 1018 } 1019 1020 bool kvm_msr_is_in_save_restore_list(uint32_t msr_index) 1021 { 1022 const struct kvm_msr_list *list = kvm_get_msr_index_list(); 1023 int i; 1024 1025 for (i = 0; i < list->nmsrs; ++i) { 1026 if (list->indices[i] == msr_index) 1027 return true; 1028 } 1029 1030 return false; 1031 } 1032 1033 static void vcpu_save_xsave_state(struct kvm_vcpu *vcpu, 1034 struct kvm_x86_state *state) 1035 { 1036 int size = vm_check_cap(vcpu->vm, KVM_CAP_XSAVE2); 1037 1038 if (size) { 1039 state->xsave = malloc(size); 1040 vcpu_xsave2_get(vcpu, state->xsave); 1041 } else { 1042 state->xsave = malloc(sizeof(struct kvm_xsave)); 1043 vcpu_xsave_get(vcpu, state->xsave); 1044 } 1045 } 1046 1047 struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu) 1048 { 1049 const struct kvm_msr_list *msr_list = kvm_get_msr_index_list(); 1050 struct kvm_x86_state *state; 1051 int i; 1052 1053 static int nested_size = -1; 1054 1055 if (nested_size == -1) { 1056 nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE); 1057 TEST_ASSERT(nested_size <= sizeof(state->nested_), 1058 "Nested state size too big, %i > %zi", 1059 nested_size, sizeof(state->nested_)); 1060 } 1061 1062 /* 1063 * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees 1064 * guest state is consistent only after userspace re-enters the 1065 * kernel with KVM_RUN. Complete IO prior to migrating state 1066 * to a new VM. 1067 */ 1068 vcpu_run_complete_io(vcpu); 1069 1070 state = malloc(sizeof(*state) + msr_list->nmsrs * sizeof(state->msrs.entries[0])); 1071 TEST_ASSERT(state, "-ENOMEM when allocating kvm state"); 1072 1073 vcpu_events_get(vcpu, &state->events); 1074 vcpu_mp_state_get(vcpu, &state->mp_state); 1075 vcpu_regs_get(vcpu, &state->regs); 1076 vcpu_save_xsave_state(vcpu, state); 1077 1078 if (kvm_has_cap(KVM_CAP_XCRS)) 1079 vcpu_xcrs_get(vcpu, &state->xcrs); 1080 1081 vcpu_sregs_get(vcpu, &state->sregs); 1082 1083 if (nested_size) { 1084 state->nested.size = sizeof(state->nested_); 1085 1086 vcpu_nested_state_get(vcpu, &state->nested); 1087 TEST_ASSERT(state->nested.size <= nested_size, 1088 "Nested state size too big, %i (KVM_CHECK_CAP gave %i)", 1089 state->nested.size, nested_size); 1090 } else { 1091 state->nested.size = 0; 1092 } 1093 1094 state->msrs.nmsrs = msr_list->nmsrs; 1095 for (i = 0; i < msr_list->nmsrs; i++) 1096 state->msrs.entries[i].index = msr_list->indices[i]; 1097 vcpu_msrs_get(vcpu, &state->msrs); 1098 1099 vcpu_debugregs_get(vcpu, &state->debugregs); 1100 1101 return state; 1102 } 1103 1104 void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state) 1105 { 1106 vcpu_sregs_set(vcpu, &state->sregs); 1107 vcpu_msrs_set(vcpu, &state->msrs); 1108 1109 if (kvm_has_cap(KVM_CAP_XCRS)) 1110 vcpu_xcrs_set(vcpu, &state->xcrs); 1111 1112 vcpu_xsave_set(vcpu, state->xsave); 1113 vcpu_events_set(vcpu, &state->events); 1114 vcpu_mp_state_set(vcpu, &state->mp_state); 1115 vcpu_debugregs_set(vcpu, &state->debugregs); 1116 vcpu_regs_set(vcpu, &state->regs); 1117 1118 if (state->nested.size) 1119 vcpu_nested_state_set(vcpu, &state->nested); 1120 } 1121 1122 void kvm_x86_state_cleanup(struct kvm_x86_state *state) 1123 { 1124 free(state->xsave); 1125 free(state); 1126 } 1127 1128 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits) 1129 { 1130 if (!kvm_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR)) { 1131 *pa_bits = kvm_cpu_has(X86_FEATURE_PAE) ? 36 : 32; 1132 *va_bits = 32; 1133 } else { 1134 *pa_bits = kvm_cpu_property(X86_PROPERTY_MAX_PHY_ADDR); 1135 *va_bits = kvm_cpu_property(X86_PROPERTY_MAX_VIRT_ADDR); 1136 } 1137 } 1138 1139 void kvm_init_vm_address_properties(struct kvm_vm *vm) 1140 { 1141 if (vm->type == KVM_X86_SEV_VM || vm->type == KVM_X86_SEV_ES_VM) { 1142 vm->arch.sev_fd = open_sev_dev_path_or_exit(); 1143 vm->arch.c_bit = BIT_ULL(this_cpu_property(X86_PROPERTY_SEV_C_BIT)); 1144 vm->gpa_tag_mask = vm->arch.c_bit; 1145 } else { 1146 vm->arch.sev_fd = -1; 1147 } 1148 } 1149 1150 const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid, 1151 uint32_t function, uint32_t index) 1152 { 1153 int i; 1154 1155 for (i = 0; i < cpuid->nent; i++) { 1156 if (cpuid->entries[i].function == function && 1157 cpuid->entries[i].index == index) 1158 return &cpuid->entries[i]; 1159 } 1160 1161 TEST_FAIL("CPUID function 0x%x index 0x%x not found ", function, index); 1162 1163 return NULL; 1164 } 1165 1166 #define X86_HYPERCALL(inputs...) \ 1167 ({ \ 1168 uint64_t r; \ 1169 \ 1170 asm volatile("test %[use_vmmcall], %[use_vmmcall]\n\t" \ 1171 "jnz 1f\n\t" \ 1172 "vmcall\n\t" \ 1173 "jmp 2f\n\t" \ 1174 "1: vmmcall\n\t" \ 1175 "2:" \ 1176 : "=a"(r) \ 1177 : [use_vmmcall] "r" (host_cpu_is_amd), inputs); \ 1178 \ 1179 r; \ 1180 }) 1181 1182 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2, 1183 uint64_t a3) 1184 { 1185 return X86_HYPERCALL("a"(nr), "b"(a0), "c"(a1), "d"(a2), "S"(a3)); 1186 } 1187 1188 uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1) 1189 { 1190 return X86_HYPERCALL("a"(nr), "D"(a0), "S"(a1)); 1191 } 1192 1193 void xen_hypercall(uint64_t nr, uint64_t a0, void *a1) 1194 { 1195 GUEST_ASSERT(!__xen_hypercall(nr, a0, a1)); 1196 } 1197 1198 const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void) 1199 { 1200 static struct kvm_cpuid2 *cpuid; 1201 int kvm_fd; 1202 1203 if (cpuid) 1204 return cpuid; 1205 1206 cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES); 1207 kvm_fd = open_kvm_dev_path_or_exit(); 1208 1209 kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1210 1211 close(kvm_fd); 1212 return cpuid; 1213 } 1214 1215 void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu) 1216 { 1217 static struct kvm_cpuid2 *cpuid_full; 1218 const struct kvm_cpuid2 *cpuid_sys, *cpuid_hv; 1219 int i, nent = 0; 1220 1221 if (!cpuid_full) { 1222 cpuid_sys = kvm_get_supported_cpuid(); 1223 cpuid_hv = kvm_get_supported_hv_cpuid(); 1224 1225 cpuid_full = allocate_kvm_cpuid2(cpuid_sys->nent + cpuid_hv->nent); 1226 if (!cpuid_full) { 1227 perror("malloc"); 1228 abort(); 1229 } 1230 1231 /* Need to skip KVM CPUID leaves 0x400000xx */ 1232 for (i = 0; i < cpuid_sys->nent; i++) { 1233 if (cpuid_sys->entries[i].function >= 0x40000000 && 1234 cpuid_sys->entries[i].function < 0x40000100) 1235 continue; 1236 cpuid_full->entries[nent] = cpuid_sys->entries[i]; 1237 nent++; 1238 } 1239 1240 memcpy(&cpuid_full->entries[nent], cpuid_hv->entries, 1241 cpuid_hv->nent * sizeof(struct kvm_cpuid_entry2)); 1242 cpuid_full->nent = nent + cpuid_hv->nent; 1243 } 1244 1245 vcpu_init_cpuid(vcpu, cpuid_full); 1246 } 1247 1248 const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu) 1249 { 1250 struct kvm_cpuid2 *cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES); 1251 1252 vcpu_ioctl(vcpu, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1253 1254 return cpuid; 1255 } 1256 1257 unsigned long vm_compute_max_gfn(struct kvm_vm *vm) 1258 { 1259 const unsigned long num_ht_pages = 12 << (30 - vm->page_shift); /* 12 GiB */ 1260 unsigned long ht_gfn, max_gfn, max_pfn; 1261 uint8_t maxphyaddr, guest_maxphyaddr; 1262 1263 /* 1264 * Use "guest MAXPHYADDR" from KVM if it's available. Guest MAXPHYADDR 1265 * enumerates the max _mappable_ GPA, which can be less than the raw 1266 * MAXPHYADDR, e.g. if MAXPHYADDR=52, KVM is using TDP, and the CPU 1267 * doesn't support 5-level TDP. 1268 */ 1269 guest_maxphyaddr = kvm_cpu_property(X86_PROPERTY_GUEST_MAX_PHY_ADDR); 1270 guest_maxphyaddr = guest_maxphyaddr ?: vm->pa_bits; 1271 TEST_ASSERT(guest_maxphyaddr <= vm->pa_bits, 1272 "Guest MAXPHYADDR should never be greater than raw MAXPHYADDR"); 1273 1274 max_gfn = (1ULL << (guest_maxphyaddr - vm->page_shift)) - 1; 1275 1276 /* Avoid reserved HyperTransport region on AMD processors. */ 1277 if (!host_cpu_is_amd) 1278 return max_gfn; 1279 1280 /* On parts with <40 physical address bits, the area is fully hidden */ 1281 if (vm->pa_bits < 40) 1282 return max_gfn; 1283 1284 /* Before family 17h, the HyperTransport area is just below 1T. */ 1285 ht_gfn = (1 << 28) - num_ht_pages; 1286 if (this_cpu_family() < 0x17) 1287 goto done; 1288 1289 /* 1290 * Otherwise it's at the top of the physical address space, possibly 1291 * reduced due to SME by bits 11:6 of CPUID[0x8000001f].EBX. Use 1292 * the old conservative value if MAXPHYADDR is not enumerated. 1293 */ 1294 if (!this_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR)) 1295 goto done; 1296 1297 maxphyaddr = this_cpu_property(X86_PROPERTY_MAX_PHY_ADDR); 1298 max_pfn = (1ULL << (maxphyaddr - vm->page_shift)) - 1; 1299 1300 if (this_cpu_has_p(X86_PROPERTY_PHYS_ADDR_REDUCTION)) 1301 max_pfn >>= this_cpu_property(X86_PROPERTY_PHYS_ADDR_REDUCTION); 1302 1303 ht_gfn = max_pfn - num_ht_pages; 1304 done: 1305 return min(max_gfn, ht_gfn - 1); 1306 } 1307 1308 /* Returns true if kvm_intel was loaded with unrestricted_guest=1. */ 1309 bool vm_is_unrestricted_guest(struct kvm_vm *vm) 1310 { 1311 /* Ensure that a KVM vendor-specific module is loaded. */ 1312 if (vm == NULL) 1313 close(open_kvm_dev_path_or_exit()); 1314 1315 return get_kvm_intel_param_bool("unrestricted_guest"); 1316 } 1317 1318 void kvm_selftest_arch_init(void) 1319 { 1320 host_cpu_is_intel = this_cpu_is_intel(); 1321 host_cpu_is_amd = this_cpu_is_amd(); 1322 is_forced_emulation_enabled = kvm_is_forced_emulation_enabled(); 1323 } 1324 1325 bool sys_clocksource_is_based_on_tsc(void) 1326 { 1327 char *clk_name = sys_get_cur_clocksource(); 1328 bool ret = !strcmp(clk_name, "tsc\n") || 1329 !strcmp(clk_name, "hyperv_clocksource_tsc_page\n"); 1330 1331 free(clk_name); 1332 1333 return ret; 1334 } 1335
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.