~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/tools/testing/selftests/kvm/lib/x86_64/vmx.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * tools/testing/selftests/kvm/lib/x86_64/vmx.c
  4  *
  5  * Copyright (C) 2018, Google LLC.
  6  */
  7 
  8 #include <asm/msr-index.h>
  9 
 10 #include "test_util.h"
 11 #include "kvm_util.h"
 12 #include "processor.h"
 13 #include "vmx.h"
 14 
 15 #define PAGE_SHIFT_4K  12
 16 
 17 #define KVM_EPT_PAGE_TABLE_MIN_PADDR 0x1c0000
 18 
 19 bool enable_evmcs;
 20 
 21 struct hv_enlightened_vmcs *current_evmcs;
 22 struct hv_vp_assist_page *current_vp_assist;
 23 
 24 struct eptPageTableEntry {
 25         uint64_t readable:1;
 26         uint64_t writable:1;
 27         uint64_t executable:1;
 28         uint64_t memory_type:3;
 29         uint64_t ignore_pat:1;
 30         uint64_t page_size:1;
 31         uint64_t accessed:1;
 32         uint64_t dirty:1;
 33         uint64_t ignored_11_10:2;
 34         uint64_t address:40;
 35         uint64_t ignored_62_52:11;
 36         uint64_t suppress_ve:1;
 37 };
 38 
 39 struct eptPageTablePointer {
 40         uint64_t memory_type:3;
 41         uint64_t page_walk_length:3;
 42         uint64_t ad_enabled:1;
 43         uint64_t reserved_11_07:5;
 44         uint64_t address:40;
 45         uint64_t reserved_63_52:12;
 46 };
 47 int vcpu_enable_evmcs(struct kvm_vcpu *vcpu)
 48 {
 49         uint16_t evmcs_ver;
 50 
 51         vcpu_enable_cap(vcpu, KVM_CAP_HYPERV_ENLIGHTENED_VMCS,
 52                         (unsigned long)&evmcs_ver);
 53 
 54         /* KVM should return supported EVMCS version range */
 55         TEST_ASSERT(((evmcs_ver >> 8) >= (evmcs_ver & 0xff)) &&
 56                     (evmcs_ver & 0xff) > 0,
 57                     "Incorrect EVMCS version range: %x:%x",
 58                     evmcs_ver & 0xff, evmcs_ver >> 8);
 59 
 60         return evmcs_ver;
 61 }
 62 
 63 /* Allocate memory regions for nested VMX tests.
 64  *
 65  * Input Args:
 66  *   vm - The VM to allocate guest-virtual addresses in.
 67  *
 68  * Output Args:
 69  *   p_vmx_gva - The guest virtual address for the struct vmx_pages.
 70  *
 71  * Return:
 72  *   Pointer to structure with the addresses of the VMX areas.
 73  */
 74 struct vmx_pages *
 75 vcpu_alloc_vmx(struct kvm_vm *vm, vm_vaddr_t *p_vmx_gva)
 76 {
 77         vm_vaddr_t vmx_gva = vm_vaddr_alloc_page(vm);
 78         struct vmx_pages *vmx = addr_gva2hva(vm, vmx_gva);
 79 
 80         /* Setup of a region of guest memory for the vmxon region. */
 81         vmx->vmxon = (void *)vm_vaddr_alloc_page(vm);
 82         vmx->vmxon_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmxon);
 83         vmx->vmxon_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmxon);
 84 
 85         /* Setup of a region of guest memory for a vmcs. */
 86         vmx->vmcs = (void *)vm_vaddr_alloc_page(vm);
 87         vmx->vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmcs);
 88         vmx->vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmcs);
 89 
 90         /* Setup of a region of guest memory for the MSR bitmap. */
 91         vmx->msr = (void *)vm_vaddr_alloc_page(vm);
 92         vmx->msr_hva = addr_gva2hva(vm, (uintptr_t)vmx->msr);
 93         vmx->msr_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->msr);
 94         memset(vmx->msr_hva, 0, getpagesize());
 95 
 96         /* Setup of a region of guest memory for the shadow VMCS. */
 97         vmx->shadow_vmcs = (void *)vm_vaddr_alloc_page(vm);
 98         vmx->shadow_vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->shadow_vmcs);
 99         vmx->shadow_vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->shadow_vmcs);
100 
101         /* Setup of a region of guest memory for the VMREAD and VMWRITE bitmaps. */
102         vmx->vmread = (void *)vm_vaddr_alloc_page(vm);
103         vmx->vmread_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmread);
104         vmx->vmread_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmread);
105         memset(vmx->vmread_hva, 0, getpagesize());
106 
107         vmx->vmwrite = (void *)vm_vaddr_alloc_page(vm);
108         vmx->vmwrite_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmwrite);
109         vmx->vmwrite_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmwrite);
110         memset(vmx->vmwrite_hva, 0, getpagesize());
111 
112         *p_vmx_gva = vmx_gva;
113         return vmx;
114 }
115 
116 bool prepare_for_vmx_operation(struct vmx_pages *vmx)
117 {
118         uint64_t feature_control;
119         uint64_t required;
120         unsigned long cr0;
121         unsigned long cr4;
122 
123         /*
124          * Ensure bits in CR0 and CR4 are valid in VMX operation:
125          * - Bit X is 1 in _FIXED0: bit X is fixed to 1 in CRx.
126          * - Bit X is 0 in _FIXED1: bit X is fixed to 0 in CRx.
127          */
128         __asm__ __volatile__("mov %%cr0, %0" : "=r"(cr0) : : "memory");
129         cr0 &= rdmsr(MSR_IA32_VMX_CR0_FIXED1);
130         cr0 |= rdmsr(MSR_IA32_VMX_CR0_FIXED0);
131         __asm__ __volatile__("mov %0, %%cr0" : : "r"(cr0) : "memory");
132 
133         __asm__ __volatile__("mov %%cr4, %0" : "=r"(cr4) : : "memory");
134         cr4 &= rdmsr(MSR_IA32_VMX_CR4_FIXED1);
135         cr4 |= rdmsr(MSR_IA32_VMX_CR4_FIXED0);
136         /* Enable VMX operation */
137         cr4 |= X86_CR4_VMXE;
138         __asm__ __volatile__("mov %0, %%cr4" : : "r"(cr4) : "memory");
139 
140         /*
141          * Configure IA32_FEATURE_CONTROL MSR to allow VMXON:
142          *  Bit 0: Lock bit. If clear, VMXON causes a #GP.
143          *  Bit 2: Enables VMXON outside of SMX operation. If clear, VMXON
144          *    outside of SMX causes a #GP.
145          */
146         required = FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
147         required |= FEAT_CTL_LOCKED;
148         feature_control = rdmsr(MSR_IA32_FEAT_CTL);
149         if ((feature_control & required) != required)
150                 wrmsr(MSR_IA32_FEAT_CTL, feature_control | required);
151 
152         /* Enter VMX root operation. */
153         *(uint32_t *)(vmx->vmxon) = vmcs_revision();
154         if (vmxon(vmx->vmxon_gpa))
155                 return false;
156 
157         return true;
158 }
159 
160 bool load_vmcs(struct vmx_pages *vmx)
161 {
162         /* Load a VMCS. */
163         *(uint32_t *)(vmx->vmcs) = vmcs_revision();
164         if (vmclear(vmx->vmcs_gpa))
165                 return false;
166 
167         if (vmptrld(vmx->vmcs_gpa))
168                 return false;
169 
170         /* Setup shadow VMCS, do not load it yet. */
171         *(uint32_t *)(vmx->shadow_vmcs) = vmcs_revision() | 0x80000000ul;
172         if (vmclear(vmx->shadow_vmcs_gpa))
173                 return false;
174 
175         return true;
176 }
177 
178 static bool ept_vpid_cap_supported(uint64_t mask)
179 {
180         return rdmsr(MSR_IA32_VMX_EPT_VPID_CAP) & mask;
181 }
182 
183 bool ept_1g_pages_supported(void)
184 {
185         return ept_vpid_cap_supported(VMX_EPT_VPID_CAP_1G_PAGES);
186 }
187 
188 /*
189  * Initialize the control fields to the most basic settings possible.
190  */
191 static inline void init_vmcs_control_fields(struct vmx_pages *vmx)
192 {
193         uint32_t sec_exec_ctl = 0;
194 
195         vmwrite(VIRTUAL_PROCESSOR_ID, 0);
196         vmwrite(POSTED_INTR_NV, 0);
197 
198         vmwrite(PIN_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PINBASED_CTLS));
199 
200         if (vmx->eptp_gpa) {
201                 uint64_t ept_paddr;
202                 struct eptPageTablePointer eptp = {
203                         .memory_type = VMX_BASIC_MEM_TYPE_WB,
204                         .page_walk_length = 3, /* + 1 */
205                         .ad_enabled = ept_vpid_cap_supported(VMX_EPT_VPID_CAP_AD_BITS),
206                         .address = vmx->eptp_gpa >> PAGE_SHIFT_4K,
207                 };
208 
209                 memcpy(&ept_paddr, &eptp, sizeof(ept_paddr));
210                 vmwrite(EPT_POINTER, ept_paddr);
211                 sec_exec_ctl |= SECONDARY_EXEC_ENABLE_EPT;
212         }
213 
214         if (!vmwrite(SECONDARY_VM_EXEC_CONTROL, sec_exec_ctl))
215                 vmwrite(CPU_BASED_VM_EXEC_CONTROL,
216                         rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS) | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
217         else {
218                 vmwrite(CPU_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS));
219                 GUEST_ASSERT(!sec_exec_ctl);
220         }
221 
222         vmwrite(EXCEPTION_BITMAP, 0);
223         vmwrite(PAGE_FAULT_ERROR_CODE_MASK, 0);
224         vmwrite(PAGE_FAULT_ERROR_CODE_MATCH, -1); /* Never match */
225         vmwrite(CR3_TARGET_COUNT, 0);
226         vmwrite(VM_EXIT_CONTROLS, rdmsr(MSR_IA32_VMX_EXIT_CTLS) |
227                 VM_EXIT_HOST_ADDR_SPACE_SIZE);    /* 64-bit host */
228         vmwrite(VM_EXIT_MSR_STORE_COUNT, 0);
229         vmwrite(VM_EXIT_MSR_LOAD_COUNT, 0);
230         vmwrite(VM_ENTRY_CONTROLS, rdmsr(MSR_IA32_VMX_ENTRY_CTLS) |
231                 VM_ENTRY_IA32E_MODE);             /* 64-bit guest */
232         vmwrite(VM_ENTRY_MSR_LOAD_COUNT, 0);
233         vmwrite(VM_ENTRY_INTR_INFO_FIELD, 0);
234         vmwrite(TPR_THRESHOLD, 0);
235 
236         vmwrite(CR0_GUEST_HOST_MASK, 0);
237         vmwrite(CR4_GUEST_HOST_MASK, 0);
238         vmwrite(CR0_READ_SHADOW, get_cr0());
239         vmwrite(CR4_READ_SHADOW, get_cr4());
240 
241         vmwrite(MSR_BITMAP, vmx->msr_gpa);
242         vmwrite(VMREAD_BITMAP, vmx->vmread_gpa);
243         vmwrite(VMWRITE_BITMAP, vmx->vmwrite_gpa);
244 }
245 
246 /*
247  * Initialize the host state fields based on the current host state, with
248  * the exception of HOST_RSP and HOST_RIP, which should be set by vmlaunch
249  * or vmresume.
250  */
251 static inline void init_vmcs_host_state(void)
252 {
253         uint32_t exit_controls = vmreadz(VM_EXIT_CONTROLS);
254 
255         vmwrite(HOST_ES_SELECTOR, get_es());
256         vmwrite(HOST_CS_SELECTOR, get_cs());
257         vmwrite(HOST_SS_SELECTOR, get_ss());
258         vmwrite(HOST_DS_SELECTOR, get_ds());
259         vmwrite(HOST_FS_SELECTOR, get_fs());
260         vmwrite(HOST_GS_SELECTOR, get_gs());
261         vmwrite(HOST_TR_SELECTOR, get_tr());
262 
263         if (exit_controls & VM_EXIT_LOAD_IA32_PAT)
264                 vmwrite(HOST_IA32_PAT, rdmsr(MSR_IA32_CR_PAT));
265         if (exit_controls & VM_EXIT_LOAD_IA32_EFER)
266                 vmwrite(HOST_IA32_EFER, rdmsr(MSR_EFER));
267         if (exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
268                 vmwrite(HOST_IA32_PERF_GLOBAL_CTRL,
269                         rdmsr(MSR_CORE_PERF_GLOBAL_CTRL));
270 
271         vmwrite(HOST_IA32_SYSENTER_CS, rdmsr(MSR_IA32_SYSENTER_CS));
272 
273         vmwrite(HOST_CR0, get_cr0());
274         vmwrite(HOST_CR3, get_cr3());
275         vmwrite(HOST_CR4, get_cr4());
276         vmwrite(HOST_FS_BASE, rdmsr(MSR_FS_BASE));
277         vmwrite(HOST_GS_BASE, rdmsr(MSR_GS_BASE));
278         vmwrite(HOST_TR_BASE,
279                 get_desc64_base((struct desc64 *)(get_gdt().address + get_tr())));
280         vmwrite(HOST_GDTR_BASE, get_gdt().address);
281         vmwrite(HOST_IDTR_BASE, get_idt().address);
282         vmwrite(HOST_IA32_SYSENTER_ESP, rdmsr(MSR_IA32_SYSENTER_ESP));
283         vmwrite(HOST_IA32_SYSENTER_EIP, rdmsr(MSR_IA32_SYSENTER_EIP));
284 }
285 
286 /*
287  * Initialize the guest state fields essentially as a clone of
288  * the host state fields. Some host state fields have fixed
289  * values, and we set the corresponding guest state fields accordingly.
290  */
291 static inline void init_vmcs_guest_state(void *rip, void *rsp)
292 {
293         vmwrite(GUEST_ES_SELECTOR, vmreadz(HOST_ES_SELECTOR));
294         vmwrite(GUEST_CS_SELECTOR, vmreadz(HOST_CS_SELECTOR));
295         vmwrite(GUEST_SS_SELECTOR, vmreadz(HOST_SS_SELECTOR));
296         vmwrite(GUEST_DS_SELECTOR, vmreadz(HOST_DS_SELECTOR));
297         vmwrite(GUEST_FS_SELECTOR, vmreadz(HOST_FS_SELECTOR));
298         vmwrite(GUEST_GS_SELECTOR, vmreadz(HOST_GS_SELECTOR));
299         vmwrite(GUEST_LDTR_SELECTOR, 0);
300         vmwrite(GUEST_TR_SELECTOR, vmreadz(HOST_TR_SELECTOR));
301         vmwrite(GUEST_INTR_STATUS, 0);
302         vmwrite(GUEST_PML_INDEX, 0);
303 
304         vmwrite(VMCS_LINK_POINTER, -1ll);
305         vmwrite(GUEST_IA32_DEBUGCTL, 0);
306         vmwrite(GUEST_IA32_PAT, vmreadz(HOST_IA32_PAT));
307         vmwrite(GUEST_IA32_EFER, vmreadz(HOST_IA32_EFER));
308         vmwrite(GUEST_IA32_PERF_GLOBAL_CTRL,
309                 vmreadz(HOST_IA32_PERF_GLOBAL_CTRL));
310 
311         vmwrite(GUEST_ES_LIMIT, -1);
312         vmwrite(GUEST_CS_LIMIT, -1);
313         vmwrite(GUEST_SS_LIMIT, -1);
314         vmwrite(GUEST_DS_LIMIT, -1);
315         vmwrite(GUEST_FS_LIMIT, -1);
316         vmwrite(GUEST_GS_LIMIT, -1);
317         vmwrite(GUEST_LDTR_LIMIT, -1);
318         vmwrite(GUEST_TR_LIMIT, 0x67);
319         vmwrite(GUEST_GDTR_LIMIT, 0xffff);
320         vmwrite(GUEST_IDTR_LIMIT, 0xffff);
321         vmwrite(GUEST_ES_AR_BYTES,
322                 vmreadz(GUEST_ES_SELECTOR) == 0 ? 0x10000 : 0xc093);
323         vmwrite(GUEST_CS_AR_BYTES, 0xa09b);
324         vmwrite(GUEST_SS_AR_BYTES, 0xc093);
325         vmwrite(GUEST_DS_AR_BYTES,
326                 vmreadz(GUEST_DS_SELECTOR) == 0 ? 0x10000 : 0xc093);
327         vmwrite(GUEST_FS_AR_BYTES,
328                 vmreadz(GUEST_FS_SELECTOR) == 0 ? 0x10000 : 0xc093);
329         vmwrite(GUEST_GS_AR_BYTES,
330                 vmreadz(GUEST_GS_SELECTOR) == 0 ? 0x10000 : 0xc093);
331         vmwrite(GUEST_LDTR_AR_BYTES, 0x10000);
332         vmwrite(GUEST_TR_AR_BYTES, 0x8b);
333         vmwrite(GUEST_INTERRUPTIBILITY_INFO, 0);
334         vmwrite(GUEST_ACTIVITY_STATE, 0);
335         vmwrite(GUEST_SYSENTER_CS, vmreadz(HOST_IA32_SYSENTER_CS));
336         vmwrite(VMX_PREEMPTION_TIMER_VALUE, 0);
337 
338         vmwrite(GUEST_CR0, vmreadz(HOST_CR0));
339         vmwrite(GUEST_CR3, vmreadz(HOST_CR3));
340         vmwrite(GUEST_CR4, vmreadz(HOST_CR4));
341         vmwrite(GUEST_ES_BASE, 0);
342         vmwrite(GUEST_CS_BASE, 0);
343         vmwrite(GUEST_SS_BASE, 0);
344         vmwrite(GUEST_DS_BASE, 0);
345         vmwrite(GUEST_FS_BASE, vmreadz(HOST_FS_BASE));
346         vmwrite(GUEST_GS_BASE, vmreadz(HOST_GS_BASE));
347         vmwrite(GUEST_LDTR_BASE, 0);
348         vmwrite(GUEST_TR_BASE, vmreadz(HOST_TR_BASE));
349         vmwrite(GUEST_GDTR_BASE, vmreadz(HOST_GDTR_BASE));
350         vmwrite(GUEST_IDTR_BASE, vmreadz(HOST_IDTR_BASE));
351         vmwrite(GUEST_DR7, 0x400);
352         vmwrite(GUEST_RSP, (uint64_t)rsp);
353         vmwrite(GUEST_RIP, (uint64_t)rip);
354         vmwrite(GUEST_RFLAGS, 2);
355         vmwrite(GUEST_PENDING_DBG_EXCEPTIONS, 0);
356         vmwrite(GUEST_SYSENTER_ESP, vmreadz(HOST_IA32_SYSENTER_ESP));
357         vmwrite(GUEST_SYSENTER_EIP, vmreadz(HOST_IA32_SYSENTER_EIP));
358 }
359 
360 void prepare_vmcs(struct vmx_pages *vmx, void *guest_rip, void *guest_rsp)
361 {
362         init_vmcs_control_fields(vmx);
363         init_vmcs_host_state();
364         init_vmcs_guest_state(guest_rip, guest_rsp);
365 }
366 
367 static void nested_create_pte(struct kvm_vm *vm,
368                               struct eptPageTableEntry *pte,
369                               uint64_t nested_paddr,
370                               uint64_t paddr,
371                               int current_level,
372                               int target_level)
373 {
374         if (!pte->readable) {
375                 pte->writable = true;
376                 pte->readable = true;
377                 pte->executable = true;
378                 pte->page_size = (current_level == target_level);
379                 if (pte->page_size)
380                         pte->address = paddr >> vm->page_shift;
381                 else
382                         pte->address = vm_alloc_page_table(vm) >> vm->page_shift;
383         } else {
384                 /*
385                  * Entry already present.  Assert that the caller doesn't want
386                  * a hugepage at this level, and that there isn't a hugepage at
387                  * this level.
388                  */
389                 TEST_ASSERT(current_level != target_level,
390                             "Cannot create hugepage at level: %u, nested_paddr: 0x%lx",
391                             current_level, nested_paddr);
392                 TEST_ASSERT(!pte->page_size,
393                             "Cannot create page table at level: %u, nested_paddr: 0x%lx",
394                             current_level, nested_paddr);
395         }
396 }
397 
398 
399 void __nested_pg_map(struct vmx_pages *vmx, struct kvm_vm *vm,
400                      uint64_t nested_paddr, uint64_t paddr, int target_level)
401 {
402         const uint64_t page_size = PG_LEVEL_SIZE(target_level);
403         struct eptPageTableEntry *pt = vmx->eptp_hva, *pte;
404         uint16_t index;
405 
406         TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
407                     "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
408 
409         TEST_ASSERT((nested_paddr >> 48) == 0,
410                     "Nested physical address 0x%lx requires 5-level paging",
411                     nested_paddr);
412         TEST_ASSERT((nested_paddr % page_size) == 0,
413                     "Nested physical address not on page boundary,\n"
414                     "  nested_paddr: 0x%lx page_size: 0x%lx",
415                     nested_paddr, page_size);
416         TEST_ASSERT((nested_paddr >> vm->page_shift) <= vm->max_gfn,
417                     "Physical address beyond beyond maximum supported,\n"
418                     "  nested_paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
419                     paddr, vm->max_gfn, vm->page_size);
420         TEST_ASSERT((paddr % page_size) == 0,
421                     "Physical address not on page boundary,\n"
422                     "  paddr: 0x%lx page_size: 0x%lx",
423                     paddr, page_size);
424         TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
425                     "Physical address beyond beyond maximum supported,\n"
426                     "  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
427                     paddr, vm->max_gfn, vm->page_size);
428 
429         for (int level = PG_LEVEL_512G; level >= PG_LEVEL_4K; level--) {
430                 index = (nested_paddr >> PG_LEVEL_SHIFT(level)) & 0x1ffu;
431                 pte = &pt[index];
432 
433                 nested_create_pte(vm, pte, nested_paddr, paddr, level, target_level);
434 
435                 if (pte->page_size)
436                         break;
437 
438                 pt = addr_gpa2hva(vm, pte->address * vm->page_size);
439         }
440 
441         /*
442          * For now mark these as accessed and dirty because the only
443          * testcase we have needs that.  Can be reconsidered later.
444          */
445         pte->accessed = true;
446         pte->dirty = true;
447 
448 }
449 
450 void nested_pg_map(struct vmx_pages *vmx, struct kvm_vm *vm,
451                    uint64_t nested_paddr, uint64_t paddr)
452 {
453         __nested_pg_map(vmx, vm, nested_paddr, paddr, PG_LEVEL_4K);
454 }
455 
456 /*
457  * Map a range of EPT guest physical addresses to the VM's physical address
458  *
459  * Input Args:
460  *   vm - Virtual Machine
461  *   nested_paddr - Nested guest physical address to map
462  *   paddr - VM Physical Address
463  *   size - The size of the range to map
464  *   level - The level at which to map the range
465  *
466  * Output Args: None
467  *
468  * Return: None
469  *
470  * Within the VM given by vm, creates a nested guest translation for the
471  * page range starting at nested_paddr to the page range starting at paddr.
472  */
473 void __nested_map(struct vmx_pages *vmx, struct kvm_vm *vm,
474                   uint64_t nested_paddr, uint64_t paddr, uint64_t size,
475                   int level)
476 {
477         size_t page_size = PG_LEVEL_SIZE(level);
478         size_t npages = size / page_size;
479 
480         TEST_ASSERT(nested_paddr + size > nested_paddr, "Vaddr overflow");
481         TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
482 
483         while (npages--) {
484                 __nested_pg_map(vmx, vm, nested_paddr, paddr, level);
485                 nested_paddr += page_size;
486                 paddr += page_size;
487         }
488 }
489 
490 void nested_map(struct vmx_pages *vmx, struct kvm_vm *vm,
491                 uint64_t nested_paddr, uint64_t paddr, uint64_t size)
492 {
493         __nested_map(vmx, vm, nested_paddr, paddr, size, PG_LEVEL_4K);
494 }
495 
496 /* Prepare an identity extended page table that maps all the
497  * physical pages in VM.
498  */
499 void nested_map_memslot(struct vmx_pages *vmx, struct kvm_vm *vm,
500                         uint32_t memslot)
501 {
502         sparsebit_idx_t i, last;
503         struct userspace_mem_region *region =
504                 memslot2region(vm, memslot);
505 
506         i = (region->region.guest_phys_addr >> vm->page_shift) - 1;
507         last = i + (region->region.memory_size >> vm->page_shift);
508         for (;;) {
509                 i = sparsebit_next_clear(region->unused_phy_pages, i);
510                 if (i > last)
511                         break;
512 
513                 nested_map(vmx, vm,
514                            (uint64_t)i << vm->page_shift,
515                            (uint64_t)i << vm->page_shift,
516                            1 << vm->page_shift);
517         }
518 }
519 
520 /* Identity map a region with 1GiB Pages. */
521 void nested_identity_map_1g(struct vmx_pages *vmx, struct kvm_vm *vm,
522                             uint64_t addr, uint64_t size)
523 {
524         __nested_map(vmx, vm, addr, addr, size, PG_LEVEL_1G);
525 }
526 
527 bool kvm_cpu_has_ept(void)
528 {
529         uint64_t ctrl;
530 
531         ctrl = kvm_get_feature_msr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS) >> 32;
532         if (!(ctrl & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
533                 return false;
534 
535         ctrl = kvm_get_feature_msr(MSR_IA32_VMX_PROCBASED_CTLS2) >> 32;
536         return ctrl & SECONDARY_EXEC_ENABLE_EPT;
537 }
538 
539 void prepare_eptp(struct vmx_pages *vmx, struct kvm_vm *vm,
540                   uint32_t eptp_memslot)
541 {
542         TEST_ASSERT(kvm_cpu_has_ept(), "KVM doesn't support nested EPT");
543 
544         vmx->eptp = (void *)vm_vaddr_alloc_page(vm);
545         vmx->eptp_hva = addr_gva2hva(vm, (uintptr_t)vmx->eptp);
546         vmx->eptp_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->eptp);
547 }
548 
549 void prepare_virtualize_apic_accesses(struct vmx_pages *vmx, struct kvm_vm *vm)
550 {
551         vmx->apic_access = (void *)vm_vaddr_alloc_page(vm);
552         vmx->apic_access_hva = addr_gva2hva(vm, (uintptr_t)vmx->apic_access);
553         vmx->apic_access_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->apic_access);
554 }
555 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php