1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Test for s390x KVM_S390_MEM_OP 4 * 5 * Copyright (C) 2019, Red Hat, Inc. 6 */ 7 #include <stdio.h> 8 #include <stdlib.h> 9 #include <string.h> 10 #include <sys/ioctl.h> 11 #include <pthread.h> 12 13 #include <linux/bits.h> 14 15 #include "test_util.h" 16 #include "kvm_util.h" 17 #include "kselftest.h" 18 #include "ucall_common.h" 19 20 enum mop_target { 21 LOGICAL, 22 SIDA, 23 ABSOLUTE, 24 INVALID, 25 }; 26 27 enum mop_access_mode { 28 READ, 29 WRITE, 30 CMPXCHG, 31 }; 32 33 struct mop_desc { 34 uintptr_t gaddr; 35 uintptr_t gaddr_v; 36 uint64_t set_flags; 37 unsigned int f_check : 1; 38 unsigned int f_inject : 1; 39 unsigned int f_key : 1; 40 unsigned int _gaddr_v : 1; 41 unsigned int _set_flags : 1; 42 unsigned int _sida_offset : 1; 43 unsigned int _ar : 1; 44 uint32_t size; 45 enum mop_target target; 46 enum mop_access_mode mode; 47 void *buf; 48 uint32_t sida_offset; 49 void *old; 50 uint8_t old_value[16]; 51 bool *cmpxchg_success; 52 uint8_t ar; 53 uint8_t key; 54 }; 55 56 const uint8_t NO_KEY = 0xff; 57 58 static struct kvm_s390_mem_op ksmo_from_desc(struct mop_desc *desc) 59 { 60 struct kvm_s390_mem_op ksmo = { 61 .gaddr = (uintptr_t)desc->gaddr, 62 .size = desc->size, 63 .buf = ((uintptr_t)desc->buf), 64 .reserved = "ignored_ignored_ignored_ignored" 65 }; 66 67 switch (desc->target) { 68 case LOGICAL: 69 if (desc->mode == READ) 70 ksmo.op = KVM_S390_MEMOP_LOGICAL_READ; 71 if (desc->mode == WRITE) 72 ksmo.op = KVM_S390_MEMOP_LOGICAL_WRITE; 73 break; 74 case SIDA: 75 if (desc->mode == READ) 76 ksmo.op = KVM_S390_MEMOP_SIDA_READ; 77 if (desc->mode == WRITE) 78 ksmo.op = KVM_S390_MEMOP_SIDA_WRITE; 79 break; 80 case ABSOLUTE: 81 if (desc->mode == READ) 82 ksmo.op = KVM_S390_MEMOP_ABSOLUTE_READ; 83 if (desc->mode == WRITE) 84 ksmo.op = KVM_S390_MEMOP_ABSOLUTE_WRITE; 85 if (desc->mode == CMPXCHG) { 86 ksmo.op = KVM_S390_MEMOP_ABSOLUTE_CMPXCHG; 87 ksmo.old_addr = (uint64_t)desc->old; 88 memcpy(desc->old_value, desc->old, desc->size); 89 } 90 break; 91 case INVALID: 92 ksmo.op = -1; 93 } 94 if (desc->f_check) 95 ksmo.flags |= KVM_S390_MEMOP_F_CHECK_ONLY; 96 if (desc->f_inject) 97 ksmo.flags |= KVM_S390_MEMOP_F_INJECT_EXCEPTION; 98 if (desc->_set_flags) 99 ksmo.flags = desc->set_flags; 100 if (desc->f_key && desc->key != NO_KEY) { 101 ksmo.flags |= KVM_S390_MEMOP_F_SKEY_PROTECTION; 102 ksmo.key = desc->key; 103 } 104 if (desc->_ar) 105 ksmo.ar = desc->ar; 106 else 107 ksmo.ar = 0; 108 if (desc->_sida_offset) 109 ksmo.sida_offset = desc->sida_offset; 110 111 return ksmo; 112 } 113 114 struct test_info { 115 struct kvm_vm *vm; 116 struct kvm_vcpu *vcpu; 117 }; 118 119 #define PRINT_MEMOP false 120 static void print_memop(struct kvm_vcpu *vcpu, const struct kvm_s390_mem_op *ksmo) 121 { 122 if (!PRINT_MEMOP) 123 return; 124 125 if (!vcpu) 126 printf("vm memop("); 127 else 128 printf("vcpu memop("); 129 switch (ksmo->op) { 130 case KVM_S390_MEMOP_LOGICAL_READ: 131 printf("LOGICAL, READ, "); 132 break; 133 case KVM_S390_MEMOP_LOGICAL_WRITE: 134 printf("LOGICAL, WRITE, "); 135 break; 136 case KVM_S390_MEMOP_SIDA_READ: 137 printf("SIDA, READ, "); 138 break; 139 case KVM_S390_MEMOP_SIDA_WRITE: 140 printf("SIDA, WRITE, "); 141 break; 142 case KVM_S390_MEMOP_ABSOLUTE_READ: 143 printf("ABSOLUTE, READ, "); 144 break; 145 case KVM_S390_MEMOP_ABSOLUTE_WRITE: 146 printf("ABSOLUTE, WRITE, "); 147 break; 148 case KVM_S390_MEMOP_ABSOLUTE_CMPXCHG: 149 printf("ABSOLUTE, CMPXCHG, "); 150 break; 151 } 152 printf("gaddr=%llu, size=%u, buf=%llu, ar=%u, key=%u, old_addr=%llx", 153 ksmo->gaddr, ksmo->size, ksmo->buf, ksmo->ar, ksmo->key, 154 ksmo->old_addr); 155 if (ksmo->flags & KVM_S390_MEMOP_F_CHECK_ONLY) 156 printf(", CHECK_ONLY"); 157 if (ksmo->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) 158 printf(", INJECT_EXCEPTION"); 159 if (ksmo->flags & KVM_S390_MEMOP_F_SKEY_PROTECTION) 160 printf(", SKEY_PROTECTION"); 161 puts(")"); 162 } 163 164 static int err_memop_ioctl(struct test_info info, struct kvm_s390_mem_op *ksmo, 165 struct mop_desc *desc) 166 { 167 struct kvm_vcpu *vcpu = info.vcpu; 168 169 if (!vcpu) 170 return __vm_ioctl(info.vm, KVM_S390_MEM_OP, ksmo); 171 else 172 return __vcpu_ioctl(vcpu, KVM_S390_MEM_OP, ksmo); 173 } 174 175 static void memop_ioctl(struct test_info info, struct kvm_s390_mem_op *ksmo, 176 struct mop_desc *desc) 177 { 178 int r; 179 180 r = err_memop_ioctl(info, ksmo, desc); 181 if (ksmo->op == KVM_S390_MEMOP_ABSOLUTE_CMPXCHG) { 182 if (desc->cmpxchg_success) { 183 int diff = memcmp(desc->old_value, desc->old, desc->size); 184 *desc->cmpxchg_success = !diff; 185 } 186 } 187 TEST_ASSERT(!r, __KVM_IOCTL_ERROR("KVM_S390_MEM_OP", r)); 188 } 189 190 #define MEMOP(err, info_p, mop_target_p, access_mode_p, buf_p, size_p, ...) \ 191 ({ \ 192 struct test_info __info = (info_p); \ 193 struct mop_desc __desc = { \ 194 .target = (mop_target_p), \ 195 .mode = (access_mode_p), \ 196 .buf = (buf_p), \ 197 .size = (size_p), \ 198 __VA_ARGS__ \ 199 }; \ 200 struct kvm_s390_mem_op __ksmo; \ 201 \ 202 if (__desc._gaddr_v) { \ 203 if (__desc.target == ABSOLUTE) \ 204 __desc.gaddr = addr_gva2gpa(__info.vm, __desc.gaddr_v); \ 205 else \ 206 __desc.gaddr = __desc.gaddr_v; \ 207 } \ 208 __ksmo = ksmo_from_desc(&__desc); \ 209 print_memop(__info.vcpu, &__ksmo); \ 210 err##memop_ioctl(__info, &__ksmo, &__desc); \ 211 }) 212 213 #define MOP(...) MEMOP(, __VA_ARGS__) 214 #define ERR_MOP(...) MEMOP(err_, __VA_ARGS__) 215 216 #define GADDR(a) .gaddr = ((uintptr_t)a) 217 #define GADDR_V(v) ._gaddr_v = 1, .gaddr_v = ((uintptr_t)v) 218 #define CHECK_ONLY .f_check = 1 219 #define SET_FLAGS(f) ._set_flags = 1, .set_flags = (f) 220 #define SIDA_OFFSET(o) ._sida_offset = 1, .sida_offset = (o) 221 #define AR(a) ._ar = 1, .ar = (a) 222 #define KEY(a) .f_key = 1, .key = (a) 223 #define INJECT .f_inject = 1 224 #define CMPXCHG_OLD(o) .old = (o) 225 #define CMPXCHG_SUCCESS(s) .cmpxchg_success = (s) 226 227 #define CHECK_N_DO(f, ...) ({ f(__VA_ARGS__, CHECK_ONLY); f(__VA_ARGS__); }) 228 229 #define PAGE_SHIFT 12 230 #define PAGE_SIZE (1ULL << PAGE_SHIFT) 231 #define PAGE_MASK (~(PAGE_SIZE - 1)) 232 #define CR0_FETCH_PROTECTION_OVERRIDE (1UL << (63 - 38)) 233 #define CR0_STORAGE_PROTECTION_OVERRIDE (1UL << (63 - 39)) 234 235 static uint8_t __aligned(PAGE_SIZE) mem1[65536]; 236 static uint8_t __aligned(PAGE_SIZE) mem2[65536]; 237 238 struct test_default { 239 struct kvm_vm *kvm_vm; 240 struct test_info vm; 241 struct test_info vcpu; 242 struct kvm_run *run; 243 int size; 244 }; 245 246 static struct test_default test_default_init(void *guest_code) 247 { 248 struct kvm_vcpu *vcpu; 249 struct test_default t; 250 251 t.size = min((size_t)kvm_check_cap(KVM_CAP_S390_MEM_OP), sizeof(mem1)); 252 t.kvm_vm = vm_create_with_one_vcpu(&vcpu, guest_code); 253 t.vm = (struct test_info) { t.kvm_vm, NULL }; 254 t.vcpu = (struct test_info) { t.kvm_vm, vcpu }; 255 t.run = vcpu->run; 256 return t; 257 } 258 259 enum stage { 260 /* Synced state set by host, e.g. DAT */ 261 STAGE_INITED, 262 /* Guest did nothing */ 263 STAGE_IDLED, 264 /* Guest set storage keys (specifics up to test case) */ 265 STAGE_SKEYS_SET, 266 /* Guest copied memory (locations up to test case) */ 267 STAGE_COPIED, 268 /* End of guest code reached */ 269 STAGE_DONE, 270 }; 271 272 #define HOST_SYNC(info_p, stage) \ 273 ({ \ 274 struct test_info __info = (info_p); \ 275 struct kvm_vcpu *__vcpu = __info.vcpu; \ 276 struct ucall uc; \ 277 int __stage = (stage); \ 278 \ 279 vcpu_run(__vcpu); \ 280 get_ucall(__vcpu, &uc); \ 281 if (uc.cmd == UCALL_ABORT) { \ 282 REPORT_GUEST_ASSERT(uc); \ 283 } \ 284 TEST_ASSERT_EQ(uc.cmd, UCALL_SYNC); \ 285 TEST_ASSERT_EQ(uc.args[1], __stage); \ 286 }) \ 287 288 static void prepare_mem12(void) 289 { 290 int i; 291 292 for (i = 0; i < sizeof(mem1); i++) 293 mem1[i] = rand(); 294 memset(mem2, 0xaa, sizeof(mem2)); 295 } 296 297 #define ASSERT_MEM_EQ(p1, p2, size) \ 298 TEST_ASSERT(!memcmp(p1, p2, size), "Memory contents do not match!") 299 300 static void default_write_read(struct test_info copy_cpu, struct test_info mop_cpu, 301 enum mop_target mop_target, uint32_t size, uint8_t key) 302 { 303 prepare_mem12(); 304 CHECK_N_DO(MOP, mop_cpu, mop_target, WRITE, mem1, size, 305 GADDR_V(mem1), KEY(key)); 306 HOST_SYNC(copy_cpu, STAGE_COPIED); 307 CHECK_N_DO(MOP, mop_cpu, mop_target, READ, mem2, size, 308 GADDR_V(mem2), KEY(key)); 309 ASSERT_MEM_EQ(mem1, mem2, size); 310 } 311 312 static void default_read(struct test_info copy_cpu, struct test_info mop_cpu, 313 enum mop_target mop_target, uint32_t size, uint8_t key) 314 { 315 prepare_mem12(); 316 CHECK_N_DO(MOP, mop_cpu, mop_target, WRITE, mem1, size, GADDR_V(mem1)); 317 HOST_SYNC(copy_cpu, STAGE_COPIED); 318 CHECK_N_DO(MOP, mop_cpu, mop_target, READ, mem2, size, 319 GADDR_V(mem2), KEY(key)); 320 ASSERT_MEM_EQ(mem1, mem2, size); 321 } 322 323 static void default_cmpxchg(struct test_default *test, uint8_t key) 324 { 325 for (int size = 1; size <= 16; size *= 2) { 326 for (int offset = 0; offset < 16; offset += size) { 327 uint8_t __aligned(16) new[16] = {}; 328 uint8_t __aligned(16) old[16]; 329 bool succ; 330 331 prepare_mem12(); 332 default_write_read(test->vcpu, test->vcpu, LOGICAL, 16, NO_KEY); 333 334 memcpy(&old, mem1, 16); 335 MOP(test->vm, ABSOLUTE, CMPXCHG, new + offset, 336 size, GADDR_V(mem1 + offset), 337 CMPXCHG_OLD(old + offset), 338 CMPXCHG_SUCCESS(&succ), KEY(key)); 339 HOST_SYNC(test->vcpu, STAGE_COPIED); 340 MOP(test->vm, ABSOLUTE, READ, mem2, 16, GADDR_V(mem2)); 341 TEST_ASSERT(succ, "exchange of values should succeed"); 342 memcpy(mem1 + offset, new + offset, size); 343 ASSERT_MEM_EQ(mem1, mem2, 16); 344 345 memcpy(&old, mem1, 16); 346 new[offset]++; 347 old[offset]++; 348 MOP(test->vm, ABSOLUTE, CMPXCHG, new + offset, 349 size, GADDR_V(mem1 + offset), 350 CMPXCHG_OLD(old + offset), 351 CMPXCHG_SUCCESS(&succ), KEY(key)); 352 HOST_SYNC(test->vcpu, STAGE_COPIED); 353 MOP(test->vm, ABSOLUTE, READ, mem2, 16, GADDR_V(mem2)); 354 TEST_ASSERT(!succ, "exchange of values should not succeed"); 355 ASSERT_MEM_EQ(mem1, mem2, 16); 356 ASSERT_MEM_EQ(&old, mem1, 16); 357 } 358 } 359 } 360 361 static void guest_copy(void) 362 { 363 GUEST_SYNC(STAGE_INITED); 364 memcpy(&mem2, &mem1, sizeof(mem2)); 365 GUEST_SYNC(STAGE_COPIED); 366 } 367 368 static void test_copy(void) 369 { 370 struct test_default t = test_default_init(guest_copy); 371 372 HOST_SYNC(t.vcpu, STAGE_INITED); 373 374 default_write_read(t.vcpu, t.vcpu, LOGICAL, t.size, NO_KEY); 375 376 kvm_vm_free(t.kvm_vm); 377 } 378 379 static void test_copy_access_register(void) 380 { 381 struct test_default t = test_default_init(guest_copy); 382 383 HOST_SYNC(t.vcpu, STAGE_INITED); 384 385 prepare_mem12(); 386 t.run->psw_mask &= ~(3UL << (63 - 17)); 387 t.run->psw_mask |= 1UL << (63 - 17); /* Enable AR mode */ 388 389 /* 390 * Primary address space gets used if an access register 391 * contains zero. The host makes use of AR[1] so is a good 392 * candidate to ensure the guest AR (of zero) is used. 393 */ 394 CHECK_N_DO(MOP, t.vcpu, LOGICAL, WRITE, mem1, t.size, 395 GADDR_V(mem1), AR(1)); 396 HOST_SYNC(t.vcpu, STAGE_COPIED); 397 398 CHECK_N_DO(MOP, t.vcpu, LOGICAL, READ, mem2, t.size, 399 GADDR_V(mem2), AR(1)); 400 ASSERT_MEM_EQ(mem1, mem2, t.size); 401 402 kvm_vm_free(t.kvm_vm); 403 } 404 405 static void set_storage_key_range(void *addr, size_t len, uint8_t key) 406 { 407 uintptr_t _addr, abs, i; 408 int not_mapped = 0; 409 410 _addr = (uintptr_t)addr; 411 for (i = _addr & PAGE_MASK; i < _addr + len; i += PAGE_SIZE) { 412 abs = i; 413 asm volatile ( 414 "lra %[abs], 0(0,%[abs])\n" 415 " jz 0f\n" 416 " llill %[not_mapped],1\n" 417 " j 1f\n" 418 "0: sske %[key], %[abs]\n" 419 "1:" 420 : [abs] "+&a" (abs), [not_mapped] "+r" (not_mapped) 421 : [key] "r" (key) 422 : "cc" 423 ); 424 GUEST_ASSERT_EQ(not_mapped, 0); 425 } 426 } 427 428 static void guest_copy_key(void) 429 { 430 set_storage_key_range(mem1, sizeof(mem1), 0x90); 431 set_storage_key_range(mem2, sizeof(mem2), 0x90); 432 GUEST_SYNC(STAGE_SKEYS_SET); 433 434 for (;;) { 435 memcpy(&mem2, &mem1, sizeof(mem2)); 436 GUEST_SYNC(STAGE_COPIED); 437 } 438 } 439 440 static void test_copy_key(void) 441 { 442 struct test_default t = test_default_init(guest_copy_key); 443 444 HOST_SYNC(t.vcpu, STAGE_SKEYS_SET); 445 446 /* vm, no key */ 447 default_write_read(t.vcpu, t.vm, ABSOLUTE, t.size, NO_KEY); 448 449 /* vm/vcpu, machting key or key 0 */ 450 default_write_read(t.vcpu, t.vcpu, LOGICAL, t.size, 0); 451 default_write_read(t.vcpu, t.vcpu, LOGICAL, t.size, 9); 452 default_write_read(t.vcpu, t.vm, ABSOLUTE, t.size, 0); 453 default_write_read(t.vcpu, t.vm, ABSOLUTE, t.size, 9); 454 /* 455 * There used to be different code paths for key handling depending on 456 * if the region crossed a page boundary. 457 * There currently are not, but the more tests the merrier. 458 */ 459 default_write_read(t.vcpu, t.vcpu, LOGICAL, 1, 0); 460 default_write_read(t.vcpu, t.vcpu, LOGICAL, 1, 9); 461 default_write_read(t.vcpu, t.vm, ABSOLUTE, 1, 0); 462 default_write_read(t.vcpu, t.vm, ABSOLUTE, 1, 9); 463 464 /* vm/vcpu, mismatching keys on read, but no fetch protection */ 465 default_read(t.vcpu, t.vcpu, LOGICAL, t.size, 2); 466 default_read(t.vcpu, t.vm, ABSOLUTE, t.size, 2); 467 468 kvm_vm_free(t.kvm_vm); 469 } 470 471 static void test_cmpxchg_key(void) 472 { 473 struct test_default t = test_default_init(guest_copy_key); 474 475 HOST_SYNC(t.vcpu, STAGE_SKEYS_SET); 476 477 default_cmpxchg(&t, NO_KEY); 478 default_cmpxchg(&t, 0); 479 default_cmpxchg(&t, 9); 480 481 kvm_vm_free(t.kvm_vm); 482 } 483 484 static __uint128_t cut_to_size(int size, __uint128_t val) 485 { 486 switch (size) { 487 case 1: 488 return (uint8_t)val; 489 case 2: 490 return (uint16_t)val; 491 case 4: 492 return (uint32_t)val; 493 case 8: 494 return (uint64_t)val; 495 case 16: 496 return val; 497 } 498 GUEST_FAIL("Invalid size = %u", size); 499 return 0; 500 } 501 502 static bool popcount_eq(__uint128_t a, __uint128_t b) 503 { 504 unsigned int count_a, count_b; 505 506 count_a = __builtin_popcountl((uint64_t)(a >> 64)) + 507 __builtin_popcountl((uint64_t)a); 508 count_b = __builtin_popcountl((uint64_t)(b >> 64)) + 509 __builtin_popcountl((uint64_t)b); 510 return count_a == count_b; 511 } 512 513 static __uint128_t rotate(int size, __uint128_t val, int amount) 514 { 515 unsigned int bits = size * 8; 516 517 amount = (amount + bits) % bits; 518 val = cut_to_size(size, val); 519 if (!amount) 520 return val; 521 return (val << (bits - amount)) | (val >> amount); 522 } 523 524 const unsigned int max_block = 16; 525 526 static void choose_block(bool guest, int i, int *size, int *offset) 527 { 528 unsigned int rand; 529 530 rand = i; 531 if (guest) { 532 rand = rand * 19 + 11; 533 *size = 1 << ((rand % 3) + 2); 534 rand = rand * 19 + 11; 535 *offset = (rand % max_block) & ~(*size - 1); 536 } else { 537 rand = rand * 17 + 5; 538 *size = 1 << (rand % 5); 539 rand = rand * 17 + 5; 540 *offset = (rand % max_block) & ~(*size - 1); 541 } 542 } 543 544 static __uint128_t permutate_bits(bool guest, int i, int size, __uint128_t old) 545 { 546 unsigned int rand; 547 int amount; 548 bool swap; 549 550 rand = i; 551 rand = rand * 3 + 1; 552 if (guest) 553 rand = rand * 3 + 1; 554 swap = rand % 2 == 0; 555 if (swap) { 556 int i, j; 557 __uint128_t new; 558 uint8_t byte0, byte1; 559 560 rand = rand * 3 + 1; 561 i = rand % size; 562 rand = rand * 3 + 1; 563 j = rand % size; 564 if (i == j) 565 return old; 566 new = rotate(16, old, i * 8); 567 byte0 = new & 0xff; 568 new &= ~0xff; 569 new = rotate(16, new, -i * 8); 570 new = rotate(16, new, j * 8); 571 byte1 = new & 0xff; 572 new = (new & ~0xff) | byte0; 573 new = rotate(16, new, -j * 8); 574 new = rotate(16, new, i * 8); 575 new = new | byte1; 576 new = rotate(16, new, -i * 8); 577 return new; 578 } 579 rand = rand * 3 + 1; 580 amount = rand % (size * 8); 581 return rotate(size, old, amount); 582 } 583 584 static bool _cmpxchg(int size, void *target, __uint128_t *old_addr, __uint128_t new) 585 { 586 bool ret; 587 588 switch (size) { 589 case 4: { 590 uint32_t old = *old_addr; 591 592 asm volatile ("cs %[old],%[new],%[address]" 593 : [old] "+d" (old), 594 [address] "+Q" (*(uint32_t *)(target)) 595 : [new] "d" ((uint32_t)new) 596 : "cc" 597 ); 598 ret = old == (uint32_t)*old_addr; 599 *old_addr = old; 600 return ret; 601 } 602 case 8: { 603 uint64_t old = *old_addr; 604 605 asm volatile ("csg %[old],%[new],%[address]" 606 : [old] "+d" (old), 607 [address] "+Q" (*(uint64_t *)(target)) 608 : [new] "d" ((uint64_t)new) 609 : "cc" 610 ); 611 ret = old == (uint64_t)*old_addr; 612 *old_addr = old; 613 return ret; 614 } 615 case 16: { 616 __uint128_t old = *old_addr; 617 618 asm volatile ("cdsg %[old],%[new],%[address]" 619 : [old] "+d" (old), 620 [address] "+Q" (*(__uint128_t *)(target)) 621 : [new] "d" (new) 622 : "cc" 623 ); 624 ret = old == *old_addr; 625 *old_addr = old; 626 return ret; 627 } 628 } 629 GUEST_FAIL("Invalid size = %u", size); 630 return 0; 631 } 632 633 const unsigned int cmpxchg_iter_outer = 100, cmpxchg_iter_inner = 10000; 634 635 static void guest_cmpxchg_key(void) 636 { 637 int size, offset; 638 __uint128_t old, new; 639 640 set_storage_key_range(mem1, max_block, 0x10); 641 set_storage_key_range(mem2, max_block, 0x10); 642 GUEST_SYNC(STAGE_SKEYS_SET); 643 644 for (int i = 0; i < cmpxchg_iter_outer; i++) { 645 do { 646 old = 1; 647 } while (!_cmpxchg(16, mem1, &old, 0)); 648 for (int j = 0; j < cmpxchg_iter_inner; j++) { 649 choose_block(true, i + j, &size, &offset); 650 do { 651 new = permutate_bits(true, i + j, size, old); 652 } while (!_cmpxchg(size, mem2 + offset, &old, new)); 653 } 654 } 655 656 GUEST_SYNC(STAGE_DONE); 657 } 658 659 static void *run_guest(void *data) 660 { 661 struct test_info *info = data; 662 663 HOST_SYNC(*info, STAGE_DONE); 664 return NULL; 665 } 666 667 static char *quad_to_char(__uint128_t *quad, int size) 668 { 669 return ((char *)quad) + (sizeof(*quad) - size); 670 } 671 672 static void test_cmpxchg_key_concurrent(void) 673 { 674 struct test_default t = test_default_init(guest_cmpxchg_key); 675 int size, offset; 676 __uint128_t old, new; 677 bool success; 678 pthread_t thread; 679 680 HOST_SYNC(t.vcpu, STAGE_SKEYS_SET); 681 prepare_mem12(); 682 MOP(t.vcpu, LOGICAL, WRITE, mem1, max_block, GADDR_V(mem2)); 683 pthread_create(&thread, NULL, run_guest, &t.vcpu); 684 685 for (int i = 0; i < cmpxchg_iter_outer; i++) { 686 do { 687 old = 0; 688 new = 1; 689 MOP(t.vm, ABSOLUTE, CMPXCHG, &new, 690 sizeof(new), GADDR_V(mem1), 691 CMPXCHG_OLD(&old), 692 CMPXCHG_SUCCESS(&success), KEY(1)); 693 } while (!success); 694 for (int j = 0; j < cmpxchg_iter_inner; j++) { 695 choose_block(false, i + j, &size, &offset); 696 do { 697 new = permutate_bits(false, i + j, size, old); 698 MOP(t.vm, ABSOLUTE, CMPXCHG, quad_to_char(&new, size), 699 size, GADDR_V(mem2 + offset), 700 CMPXCHG_OLD(quad_to_char(&old, size)), 701 CMPXCHG_SUCCESS(&success), KEY(1)); 702 } while (!success); 703 } 704 } 705 706 pthread_join(thread, NULL); 707 708 MOP(t.vcpu, LOGICAL, READ, mem2, max_block, GADDR_V(mem2)); 709 TEST_ASSERT(popcount_eq(*(__uint128_t *)mem1, *(__uint128_t *)mem2), 710 "Must retain number of set bits"); 711 712 kvm_vm_free(t.kvm_vm); 713 } 714 715 static void guest_copy_key_fetch_prot(void) 716 { 717 /* 718 * For some reason combining the first sync with override enablement 719 * results in an exception when calling HOST_SYNC. 720 */ 721 GUEST_SYNC(STAGE_INITED); 722 /* Storage protection override applies to both store and fetch. */ 723 set_storage_key_range(mem1, sizeof(mem1), 0x98); 724 set_storage_key_range(mem2, sizeof(mem2), 0x98); 725 GUEST_SYNC(STAGE_SKEYS_SET); 726 727 for (;;) { 728 memcpy(&mem2, &mem1, sizeof(mem2)); 729 GUEST_SYNC(STAGE_COPIED); 730 } 731 } 732 733 static void test_copy_key_storage_prot_override(void) 734 { 735 struct test_default t = test_default_init(guest_copy_key_fetch_prot); 736 737 HOST_SYNC(t.vcpu, STAGE_INITED); 738 t.run->s.regs.crs[0] |= CR0_STORAGE_PROTECTION_OVERRIDE; 739 t.run->kvm_dirty_regs = KVM_SYNC_CRS; 740 HOST_SYNC(t.vcpu, STAGE_SKEYS_SET); 741 742 /* vcpu, mismatching keys, storage protection override in effect */ 743 default_write_read(t.vcpu, t.vcpu, LOGICAL, t.size, 2); 744 745 kvm_vm_free(t.kvm_vm); 746 } 747 748 static void test_copy_key_fetch_prot(void) 749 { 750 struct test_default t = test_default_init(guest_copy_key_fetch_prot); 751 752 HOST_SYNC(t.vcpu, STAGE_INITED); 753 HOST_SYNC(t.vcpu, STAGE_SKEYS_SET); 754 755 /* vm/vcpu, matching key, fetch protection in effect */ 756 default_read(t.vcpu, t.vcpu, LOGICAL, t.size, 9); 757 default_read(t.vcpu, t.vm, ABSOLUTE, t.size, 9); 758 759 kvm_vm_free(t.kvm_vm); 760 } 761 762 #define ERR_PROT_MOP(...) \ 763 ({ \ 764 int rv; \ 765 \ 766 rv = ERR_MOP(__VA_ARGS__); \ 767 TEST_ASSERT(rv == 4, "Should result in protection exception"); \ 768 }) 769 770 static void guest_error_key(void) 771 { 772 GUEST_SYNC(STAGE_INITED); 773 set_storage_key_range(mem1, PAGE_SIZE, 0x18); 774 set_storage_key_range(mem1 + PAGE_SIZE, sizeof(mem1) - PAGE_SIZE, 0x98); 775 GUEST_SYNC(STAGE_SKEYS_SET); 776 GUEST_SYNC(STAGE_IDLED); 777 } 778 779 static void test_errors_key(void) 780 { 781 struct test_default t = test_default_init(guest_error_key); 782 783 HOST_SYNC(t.vcpu, STAGE_INITED); 784 HOST_SYNC(t.vcpu, STAGE_SKEYS_SET); 785 786 /* vm/vcpu, mismatching keys, fetch protection in effect */ 787 CHECK_N_DO(ERR_PROT_MOP, t.vcpu, LOGICAL, WRITE, mem1, t.size, GADDR_V(mem1), KEY(2)); 788 CHECK_N_DO(ERR_PROT_MOP, t.vcpu, LOGICAL, READ, mem2, t.size, GADDR_V(mem1), KEY(2)); 789 CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, WRITE, mem1, t.size, GADDR_V(mem1), KEY(2)); 790 CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, READ, mem2, t.size, GADDR_V(mem1), KEY(2)); 791 792 kvm_vm_free(t.kvm_vm); 793 } 794 795 static void test_errors_cmpxchg_key(void) 796 { 797 struct test_default t = test_default_init(guest_copy_key_fetch_prot); 798 int i; 799 800 HOST_SYNC(t.vcpu, STAGE_INITED); 801 HOST_SYNC(t.vcpu, STAGE_SKEYS_SET); 802 803 for (i = 1; i <= 16; i *= 2) { 804 __uint128_t old = 0; 805 806 ERR_PROT_MOP(t.vm, ABSOLUTE, CMPXCHG, mem2, i, GADDR_V(mem2), 807 CMPXCHG_OLD(&old), KEY(2)); 808 } 809 810 kvm_vm_free(t.kvm_vm); 811 } 812 813 static void test_termination(void) 814 { 815 struct test_default t = test_default_init(guest_error_key); 816 uint64_t prefix; 817 uint64_t teid; 818 uint64_t teid_mask = BIT(63 - 56) | BIT(63 - 60) | BIT(63 - 61); 819 uint64_t psw[2]; 820 821 HOST_SYNC(t.vcpu, STAGE_INITED); 822 HOST_SYNC(t.vcpu, STAGE_SKEYS_SET); 823 824 /* vcpu, mismatching keys after first page */ 825 ERR_PROT_MOP(t.vcpu, LOGICAL, WRITE, mem1, t.size, GADDR_V(mem1), KEY(1), INJECT); 826 /* 827 * The memop injected a program exception and the test needs to check the 828 * Translation-Exception Identification (TEID). It is necessary to run 829 * the guest in order to be able to read the TEID from guest memory. 830 * Set the guest program new PSW, so the guest state is not clobbered. 831 */ 832 prefix = t.run->s.regs.prefix; 833 psw[0] = t.run->psw_mask; 834 psw[1] = t.run->psw_addr; 835 MOP(t.vm, ABSOLUTE, WRITE, psw, sizeof(psw), GADDR(prefix + 464)); 836 HOST_SYNC(t.vcpu, STAGE_IDLED); 837 MOP(t.vm, ABSOLUTE, READ, &teid, sizeof(teid), GADDR(prefix + 168)); 838 /* Bits 56, 60, 61 form a code, 0 being the only one allowing for termination */ 839 TEST_ASSERT_EQ(teid & teid_mask, 0); 840 841 kvm_vm_free(t.kvm_vm); 842 } 843 844 static void test_errors_key_storage_prot_override(void) 845 { 846 struct test_default t = test_default_init(guest_copy_key_fetch_prot); 847 848 HOST_SYNC(t.vcpu, STAGE_INITED); 849 t.run->s.regs.crs[0] |= CR0_STORAGE_PROTECTION_OVERRIDE; 850 t.run->kvm_dirty_regs = KVM_SYNC_CRS; 851 HOST_SYNC(t.vcpu, STAGE_SKEYS_SET); 852 853 /* vm, mismatching keys, storage protection override not applicable to vm */ 854 CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, WRITE, mem1, t.size, GADDR_V(mem1), KEY(2)); 855 CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, READ, mem2, t.size, GADDR_V(mem2), KEY(2)); 856 857 kvm_vm_free(t.kvm_vm); 858 } 859 860 const uint64_t last_page_addr = -PAGE_SIZE; 861 862 static void guest_copy_key_fetch_prot_override(void) 863 { 864 int i; 865 char *page_0 = 0; 866 867 GUEST_SYNC(STAGE_INITED); 868 set_storage_key_range(0, PAGE_SIZE, 0x18); 869 set_storage_key_range((void *)last_page_addr, PAGE_SIZE, 0x0); 870 asm volatile ("sske %[key],%[addr]\n" :: [addr] "r"(0L), [key] "r"(0x18) : "cc"); 871 GUEST_SYNC(STAGE_SKEYS_SET); 872 873 for (;;) { 874 for (i = 0; i < PAGE_SIZE; i++) 875 page_0[i] = mem1[i]; 876 GUEST_SYNC(STAGE_COPIED); 877 } 878 } 879 880 static void test_copy_key_fetch_prot_override(void) 881 { 882 struct test_default t = test_default_init(guest_copy_key_fetch_prot_override); 883 vm_vaddr_t guest_0_page, guest_last_page; 884 885 guest_0_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, 0); 886 guest_last_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, last_page_addr); 887 if (guest_0_page != 0 || guest_last_page != last_page_addr) { 888 print_skip("did not allocate guest pages at required positions"); 889 goto out; 890 } 891 892 HOST_SYNC(t.vcpu, STAGE_INITED); 893 t.run->s.regs.crs[0] |= CR0_FETCH_PROTECTION_OVERRIDE; 894 t.run->kvm_dirty_regs = KVM_SYNC_CRS; 895 HOST_SYNC(t.vcpu, STAGE_SKEYS_SET); 896 897 /* vcpu, mismatching keys on fetch, fetch protection override applies */ 898 prepare_mem12(); 899 MOP(t.vcpu, LOGICAL, WRITE, mem1, PAGE_SIZE, GADDR_V(mem1)); 900 HOST_SYNC(t.vcpu, STAGE_COPIED); 901 CHECK_N_DO(MOP, t.vcpu, LOGICAL, READ, mem2, 2048, GADDR_V(guest_0_page), KEY(2)); 902 ASSERT_MEM_EQ(mem1, mem2, 2048); 903 904 /* 905 * vcpu, mismatching keys on fetch, fetch protection override applies, 906 * wraparound 907 */ 908 prepare_mem12(); 909 MOP(t.vcpu, LOGICAL, WRITE, mem1, 2 * PAGE_SIZE, GADDR_V(guest_last_page)); 910 HOST_SYNC(t.vcpu, STAGE_COPIED); 911 CHECK_N_DO(MOP, t.vcpu, LOGICAL, READ, mem2, PAGE_SIZE + 2048, 912 GADDR_V(guest_last_page), KEY(2)); 913 ASSERT_MEM_EQ(mem1, mem2, 2048); 914 915 out: 916 kvm_vm_free(t.kvm_vm); 917 } 918 919 static void test_errors_key_fetch_prot_override_not_enabled(void) 920 { 921 struct test_default t = test_default_init(guest_copy_key_fetch_prot_override); 922 vm_vaddr_t guest_0_page, guest_last_page; 923 924 guest_0_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, 0); 925 guest_last_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, last_page_addr); 926 if (guest_0_page != 0 || guest_last_page != last_page_addr) { 927 print_skip("did not allocate guest pages at required positions"); 928 goto out; 929 } 930 HOST_SYNC(t.vcpu, STAGE_INITED); 931 HOST_SYNC(t.vcpu, STAGE_SKEYS_SET); 932 933 /* vcpu, mismatching keys on fetch, fetch protection override not enabled */ 934 CHECK_N_DO(ERR_PROT_MOP, t.vcpu, LOGICAL, READ, mem2, 2048, GADDR_V(0), KEY(2)); 935 936 out: 937 kvm_vm_free(t.kvm_vm); 938 } 939 940 static void test_errors_key_fetch_prot_override_enabled(void) 941 { 942 struct test_default t = test_default_init(guest_copy_key_fetch_prot_override); 943 vm_vaddr_t guest_0_page, guest_last_page; 944 945 guest_0_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, 0); 946 guest_last_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, last_page_addr); 947 if (guest_0_page != 0 || guest_last_page != last_page_addr) { 948 print_skip("did not allocate guest pages at required positions"); 949 goto out; 950 } 951 HOST_SYNC(t.vcpu, STAGE_INITED); 952 t.run->s.regs.crs[0] |= CR0_FETCH_PROTECTION_OVERRIDE; 953 t.run->kvm_dirty_regs = KVM_SYNC_CRS; 954 HOST_SYNC(t.vcpu, STAGE_SKEYS_SET); 955 956 /* 957 * vcpu, mismatching keys on fetch, 958 * fetch protection override does not apply because memory range exceeded 959 */ 960 CHECK_N_DO(ERR_PROT_MOP, t.vcpu, LOGICAL, READ, mem2, 2048 + 1, GADDR_V(0), KEY(2)); 961 CHECK_N_DO(ERR_PROT_MOP, t.vcpu, LOGICAL, READ, mem2, PAGE_SIZE + 2048 + 1, 962 GADDR_V(guest_last_page), KEY(2)); 963 /* vm, fetch protected override does not apply */ 964 CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, READ, mem2, 2048, GADDR(0), KEY(2)); 965 CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, READ, mem2, 2048, GADDR_V(guest_0_page), KEY(2)); 966 967 out: 968 kvm_vm_free(t.kvm_vm); 969 } 970 971 static void guest_idle(void) 972 { 973 GUEST_SYNC(STAGE_INITED); /* for consistency's sake */ 974 for (;;) 975 GUEST_SYNC(STAGE_IDLED); 976 } 977 978 static void _test_errors_common(struct test_info info, enum mop_target target, int size) 979 { 980 int rv; 981 982 /* Bad size: */ 983 rv = ERR_MOP(info, target, WRITE, mem1, -1, GADDR_V(mem1)); 984 TEST_ASSERT(rv == -1 && errno == E2BIG, "ioctl allows insane sizes"); 985 986 /* Zero size: */ 987 rv = ERR_MOP(info, target, WRITE, mem1, 0, GADDR_V(mem1)); 988 TEST_ASSERT(rv == -1 && (errno == EINVAL || errno == ENOMEM), 989 "ioctl allows 0 as size"); 990 991 /* Bad flags: */ 992 rv = ERR_MOP(info, target, WRITE, mem1, size, GADDR_V(mem1), SET_FLAGS(-1)); 993 TEST_ASSERT(rv == -1 && errno == EINVAL, "ioctl allows all flags"); 994 995 /* Bad guest address: */ 996 rv = ERR_MOP(info, target, WRITE, mem1, size, GADDR((void *)~0xfffUL), CHECK_ONLY); 997 TEST_ASSERT(rv > 0, "ioctl does not report bad guest memory address with CHECK_ONLY"); 998 rv = ERR_MOP(info, target, WRITE, mem1, size, GADDR((void *)~0xfffUL)); 999 TEST_ASSERT(rv > 0, "ioctl does not report bad guest memory address on write"); 1000 1001 /* Bad host address: */ 1002 rv = ERR_MOP(info, target, WRITE, 0, size, GADDR_V(mem1)); 1003 TEST_ASSERT(rv == -1 && errno == EFAULT, 1004 "ioctl does not report bad host memory address"); 1005 1006 /* Bad key: */ 1007 rv = ERR_MOP(info, target, WRITE, mem1, size, GADDR_V(mem1), KEY(17)); 1008 TEST_ASSERT(rv == -1 && errno == EINVAL, "ioctl allows invalid key"); 1009 } 1010 1011 static void test_errors(void) 1012 { 1013 struct test_default t = test_default_init(guest_idle); 1014 int rv; 1015 1016 HOST_SYNC(t.vcpu, STAGE_INITED); 1017 1018 _test_errors_common(t.vcpu, LOGICAL, t.size); 1019 _test_errors_common(t.vm, ABSOLUTE, t.size); 1020 1021 /* Bad operation: */ 1022 rv = ERR_MOP(t.vcpu, INVALID, WRITE, mem1, t.size, GADDR_V(mem1)); 1023 TEST_ASSERT(rv == -1 && errno == EINVAL, "ioctl allows bad operations"); 1024 /* virtual addresses are not translated when passing INVALID */ 1025 rv = ERR_MOP(t.vm, INVALID, WRITE, mem1, PAGE_SIZE, GADDR(0)); 1026 TEST_ASSERT(rv == -1 && errno == EINVAL, "ioctl allows bad operations"); 1027 1028 /* Bad access register: */ 1029 t.run->psw_mask &= ~(3UL << (63 - 17)); 1030 t.run->psw_mask |= 1UL << (63 - 17); /* Enable AR mode */ 1031 HOST_SYNC(t.vcpu, STAGE_IDLED); /* To sync new state to SIE block */ 1032 rv = ERR_MOP(t.vcpu, LOGICAL, WRITE, mem1, t.size, GADDR_V(mem1), AR(17)); 1033 TEST_ASSERT(rv == -1 && errno == EINVAL, "ioctl allows ARs > 15"); 1034 t.run->psw_mask &= ~(3UL << (63 - 17)); /* Disable AR mode */ 1035 HOST_SYNC(t.vcpu, STAGE_IDLED); /* Run to sync new state */ 1036 1037 /* Check that the SIDA calls are rejected for non-protected guests */ 1038 rv = ERR_MOP(t.vcpu, SIDA, READ, mem1, 8, GADDR(0), SIDA_OFFSET(0x1c0)); 1039 TEST_ASSERT(rv == -1 && errno == EINVAL, 1040 "ioctl does not reject SIDA_READ in non-protected mode"); 1041 rv = ERR_MOP(t.vcpu, SIDA, WRITE, mem1, 8, GADDR(0), SIDA_OFFSET(0x1c0)); 1042 TEST_ASSERT(rv == -1 && errno == EINVAL, 1043 "ioctl does not reject SIDA_WRITE in non-protected mode"); 1044 1045 kvm_vm_free(t.kvm_vm); 1046 } 1047 1048 static void test_errors_cmpxchg(void) 1049 { 1050 struct test_default t = test_default_init(guest_idle); 1051 __uint128_t old; 1052 int rv, i, power = 1; 1053 1054 HOST_SYNC(t.vcpu, STAGE_INITED); 1055 1056 for (i = 0; i < 32; i++) { 1057 if (i == power) { 1058 power *= 2; 1059 continue; 1060 } 1061 rv = ERR_MOP(t.vm, ABSOLUTE, CMPXCHG, mem1, i, GADDR_V(mem1), 1062 CMPXCHG_OLD(&old)); 1063 TEST_ASSERT(rv == -1 && errno == EINVAL, 1064 "ioctl allows bad size for cmpxchg"); 1065 } 1066 for (i = 1; i <= 16; i *= 2) { 1067 rv = ERR_MOP(t.vm, ABSOLUTE, CMPXCHG, mem1, i, GADDR((void *)~0xfffUL), 1068 CMPXCHG_OLD(&old)); 1069 TEST_ASSERT(rv > 0, "ioctl allows bad guest address for cmpxchg"); 1070 } 1071 for (i = 2; i <= 16; i *= 2) { 1072 rv = ERR_MOP(t.vm, ABSOLUTE, CMPXCHG, mem1, i, GADDR_V(mem1 + 1), 1073 CMPXCHG_OLD(&old)); 1074 TEST_ASSERT(rv == -1 && errno == EINVAL, 1075 "ioctl allows bad alignment for cmpxchg"); 1076 } 1077 1078 kvm_vm_free(t.kvm_vm); 1079 } 1080 1081 int main(int argc, char *argv[]) 1082 { 1083 int extension_cap, idx; 1084 1085 TEST_REQUIRE(kvm_has_cap(KVM_CAP_S390_MEM_OP)); 1086 extension_cap = kvm_check_cap(KVM_CAP_S390_MEM_OP_EXTENSION); 1087 1088 struct testdef { 1089 const char *name; 1090 void (*test)(void); 1091 bool requirements_met; 1092 } testlist[] = { 1093 { 1094 .name = "simple copy", 1095 .test = test_copy, 1096 .requirements_met = true, 1097 }, 1098 { 1099 .name = "generic error checks", 1100 .test = test_errors, 1101 .requirements_met = true, 1102 }, 1103 { 1104 .name = "copy with storage keys", 1105 .test = test_copy_key, 1106 .requirements_met = extension_cap > 0, 1107 }, 1108 { 1109 .name = "cmpxchg with storage keys", 1110 .test = test_cmpxchg_key, 1111 .requirements_met = extension_cap & 0x2, 1112 }, 1113 { 1114 .name = "concurrently cmpxchg with storage keys", 1115 .test = test_cmpxchg_key_concurrent, 1116 .requirements_met = extension_cap & 0x2, 1117 }, 1118 { 1119 .name = "copy with key storage protection override", 1120 .test = test_copy_key_storage_prot_override, 1121 .requirements_met = extension_cap > 0, 1122 }, 1123 { 1124 .name = "copy with key fetch protection", 1125 .test = test_copy_key_fetch_prot, 1126 .requirements_met = extension_cap > 0, 1127 }, 1128 { 1129 .name = "copy with key fetch protection override", 1130 .test = test_copy_key_fetch_prot_override, 1131 .requirements_met = extension_cap > 0, 1132 }, 1133 { 1134 .name = "copy with access register mode", 1135 .test = test_copy_access_register, 1136 .requirements_met = true, 1137 }, 1138 { 1139 .name = "error checks with key", 1140 .test = test_errors_key, 1141 .requirements_met = extension_cap > 0, 1142 }, 1143 { 1144 .name = "error checks for cmpxchg with key", 1145 .test = test_errors_cmpxchg_key, 1146 .requirements_met = extension_cap & 0x2, 1147 }, 1148 { 1149 .name = "error checks for cmpxchg", 1150 .test = test_errors_cmpxchg, 1151 .requirements_met = extension_cap & 0x2, 1152 }, 1153 { 1154 .name = "termination", 1155 .test = test_termination, 1156 .requirements_met = extension_cap > 0, 1157 }, 1158 { 1159 .name = "error checks with key storage protection override", 1160 .test = test_errors_key_storage_prot_override, 1161 .requirements_met = extension_cap > 0, 1162 }, 1163 { 1164 .name = "error checks without key fetch prot override", 1165 .test = test_errors_key_fetch_prot_override_not_enabled, 1166 .requirements_met = extension_cap > 0, 1167 }, 1168 { 1169 .name = "error checks with key fetch prot override", 1170 .test = test_errors_key_fetch_prot_override_enabled, 1171 .requirements_met = extension_cap > 0, 1172 }, 1173 }; 1174 1175 ksft_print_header(); 1176 ksft_set_plan(ARRAY_SIZE(testlist)); 1177 1178 for (idx = 0; idx < ARRAY_SIZE(testlist); idx++) { 1179 if (testlist[idx].requirements_met) { 1180 testlist[idx].test(); 1181 ksft_test_result_pass("%s\n", testlist[idx].name); 1182 } else { 1183 ksft_test_result_skip("%s - requirements not met (kernel has extension cap %#x)\n", 1184 testlist[idx].name, extension_cap); 1185 } 1186 } 1187 1188 ksft_finished(); /* Print results and exit() accordingly */ 1189 } 1190
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.