~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/tools/testing/selftests/net/ip_defrag.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 
  3 #define _GNU_SOURCE
  4 
  5 #include <arpa/inet.h>
  6 #include <errno.h>
  7 #include <error.h>
  8 #include <linux/in.h>
  9 #include <netinet/ip.h>
 10 #include <netinet/ip6.h>
 11 #include <netinet/udp.h>
 12 #include <stdbool.h>
 13 #include <stdio.h>
 14 #include <stdlib.h>
 15 #include <string.h>
 16 #include <time.h>
 17 #include <unistd.h>
 18 
 19 static bool             cfg_do_ipv4;
 20 static bool             cfg_do_ipv6;
 21 static bool             cfg_verbose;
 22 static bool             cfg_overlap;
 23 static bool             cfg_permissive;
 24 static unsigned short   cfg_port = 9000;
 25 
 26 const struct in_addr addr4 = { .s_addr = __constant_htonl(INADDR_LOOPBACK + 2) };
 27 const struct in6_addr addr6 = IN6ADDR_LOOPBACK_INIT;
 28 
 29 #define IP4_HLEN        (sizeof(struct iphdr))
 30 #define IP6_HLEN        (sizeof(struct ip6_hdr))
 31 #define UDP_HLEN        (sizeof(struct udphdr))
 32 
 33 /* IPv6 fragment header lenth. */
 34 #define FRAG_HLEN       8
 35 
 36 static int payload_len;
 37 static int max_frag_len;
 38 
 39 #define MSG_LEN_MAX     10000   /* Max UDP payload length. */
 40 
 41 #define IP4_MF          (1u << 13)  /* IPv4 MF flag. */
 42 #define IP6_MF          (1)  /* IPv6 MF flag. */
 43 
 44 #define CSUM_MANGLED_0 (0xffff)
 45 
 46 static uint8_t udp_payload[MSG_LEN_MAX];
 47 static uint8_t ip_frame[IP_MAXPACKET];
 48 static uint32_t ip_id = 0xabcd;
 49 static int msg_counter;
 50 static int frag_counter;
 51 static unsigned int seed;
 52 
 53 /* Receive a UDP packet. Validate it matches udp_payload. */
 54 static void recv_validate_udp(int fd_udp)
 55 {
 56         ssize_t ret;
 57         static uint8_t recv_buff[MSG_LEN_MAX];
 58 
 59         ret = recv(fd_udp, recv_buff, payload_len, 0);
 60         msg_counter++;
 61 
 62         if (cfg_overlap) {
 63                 if (ret == -1 && (errno == ETIMEDOUT || errno == EAGAIN))
 64                         return;  /* OK */
 65                 if (!cfg_permissive) {
 66                         if (ret != -1)
 67                                 error(1, 0, "recv: expected timeout; got %d",
 68                                         (int)ret);
 69                         error(1, errno, "recv: expected timeout: %d", errno);
 70                 }
 71         }
 72 
 73         if (ret == -1)
 74                 error(1, errno, "recv: payload_len = %d max_frag_len = %d",
 75                         payload_len, max_frag_len);
 76         if (ret != payload_len)
 77                 error(1, 0, "recv: wrong size: %d vs %d", (int)ret, payload_len);
 78         if (memcmp(udp_payload, recv_buff, payload_len))
 79                 error(1, 0, "recv: wrong data");
 80 }
 81 
 82 static uint32_t raw_checksum(uint8_t *buf, int len, uint32_t sum)
 83 {
 84         int i;
 85 
 86         for (i = 0; i < (len & ~1U); i += 2) {
 87                 sum += (u_int16_t)ntohs(*((u_int16_t *)(buf + i)));
 88                 if (sum > 0xffff)
 89                         sum -= 0xffff;
 90         }
 91 
 92         if (i < len) {
 93                 sum += buf[i] << 8;
 94                 if (sum > 0xffff)
 95                         sum -= 0xffff;
 96         }
 97 
 98         return sum;
 99 }
100 
101 static uint16_t udp_checksum(struct ip *iphdr, struct udphdr *udphdr)
102 {
103         uint32_t sum = 0;
104         uint16_t res;
105 
106         sum = raw_checksum((uint8_t *)&iphdr->ip_src, 2 * sizeof(iphdr->ip_src),
107                                 IPPROTO_UDP + (uint32_t)(UDP_HLEN + payload_len));
108         sum = raw_checksum((uint8_t *)udphdr, UDP_HLEN, sum);
109         sum = raw_checksum((uint8_t *)udp_payload, payload_len, sum);
110         res = 0xffff & ~sum;
111         if (res)
112                 return htons(res);
113         else
114                 return CSUM_MANGLED_0;
115 }
116 
117 static uint16_t udp6_checksum(struct ip6_hdr *iphdr, struct udphdr *udphdr)
118 {
119         uint32_t sum = 0;
120         uint16_t res;
121 
122         sum = raw_checksum((uint8_t *)&iphdr->ip6_src, 2 * sizeof(iphdr->ip6_src),
123                                 IPPROTO_UDP);
124         sum = raw_checksum((uint8_t *)&udphdr->len, sizeof(udphdr->len), sum);
125         sum = raw_checksum((uint8_t *)udphdr, UDP_HLEN, sum);
126         sum = raw_checksum((uint8_t *)udp_payload, payload_len, sum);
127         res = 0xffff & ~sum;
128         if (res)
129                 return htons(res);
130         else
131                 return CSUM_MANGLED_0;
132 }
133 
134 static void send_fragment(int fd_raw, struct sockaddr *addr, socklen_t alen,
135                                 int offset, bool ipv6)
136 {
137         int frag_len;
138         int res;
139         int payload_offset = offset > 0 ? offset - UDP_HLEN : 0;
140         uint8_t *frag_start = ipv6 ? ip_frame + IP6_HLEN + FRAG_HLEN :
141                                         ip_frame + IP4_HLEN;
142 
143         if (offset == 0) {
144                 struct udphdr udphdr;
145                 udphdr.source = htons(cfg_port + 1);
146                 udphdr.dest = htons(cfg_port);
147                 udphdr.len = htons(UDP_HLEN + payload_len);
148                 udphdr.check = 0;
149                 if (ipv6)
150                         udphdr.check = udp6_checksum((struct ip6_hdr *)ip_frame, &udphdr);
151                 else
152                         udphdr.check = udp_checksum((struct ip *)ip_frame, &udphdr);
153                 memcpy(frag_start, &udphdr, UDP_HLEN);
154         }
155 
156         if (ipv6) {
157                 struct ip6_hdr *ip6hdr = (struct ip6_hdr *)ip_frame;
158                 struct ip6_frag *fraghdr = (struct ip6_frag *)(ip_frame + IP6_HLEN);
159                 if (payload_len - payload_offset <= max_frag_len && offset > 0) {
160                         /* This is the last fragment. */
161                         frag_len = FRAG_HLEN + payload_len - payload_offset;
162                         fraghdr->ip6f_offlg = htons(offset);
163                 } else {
164                         frag_len = FRAG_HLEN + max_frag_len;
165                         fraghdr->ip6f_offlg = htons(offset | IP6_MF);
166                 }
167                 ip6hdr->ip6_plen = htons(frag_len);
168                 if (offset == 0)
169                         memcpy(frag_start + UDP_HLEN, udp_payload,
170                                 frag_len - FRAG_HLEN - UDP_HLEN);
171                 else
172                         memcpy(frag_start, udp_payload + payload_offset,
173                                 frag_len - FRAG_HLEN);
174                 frag_len += IP6_HLEN;
175         } else {
176                 struct ip *iphdr = (struct ip *)ip_frame;
177                 if (payload_len - payload_offset <= max_frag_len && offset > 0) {
178                         /* This is the last fragment. */
179                         frag_len = IP4_HLEN + payload_len - payload_offset;
180                         iphdr->ip_off = htons(offset / 8);
181                 } else {
182                         frag_len = IP4_HLEN + max_frag_len;
183                         iphdr->ip_off = htons(offset / 8 | IP4_MF);
184                 }
185                 iphdr->ip_len = htons(frag_len);
186                 if (offset == 0)
187                         memcpy(frag_start + UDP_HLEN, udp_payload,
188                                 frag_len - IP4_HLEN - UDP_HLEN);
189                 else
190                         memcpy(frag_start, udp_payload + payload_offset,
191                                 frag_len - IP4_HLEN);
192         }
193 
194         res = sendto(fd_raw, ip_frame, frag_len, 0, addr, alen);
195         if (res < 0 && errno != EPERM)
196                 error(1, errno, "send_fragment");
197         if (res >= 0 && res != frag_len)
198                 error(1, 0, "send_fragment: %d vs %d", res, frag_len);
199 
200         frag_counter++;
201 }
202 
203 static void send_udp_frags(int fd_raw, struct sockaddr *addr,
204                                 socklen_t alen, bool ipv6)
205 {
206         struct ip *iphdr = (struct ip *)ip_frame;
207         struct ip6_hdr *ip6hdr = (struct ip6_hdr *)ip_frame;
208         int res;
209         int offset;
210         int frag_len;
211 
212         /* Send the UDP datagram using raw IP fragments: the 0th fragment
213          * has the UDP header; other fragments are pieces of udp_payload
214          * split in chunks of frag_len size.
215          *
216          * Odd fragments (1st, 3rd, 5th, etc.) are sent out first, then
217          * even fragments (0th, 2nd, etc.) are sent out.
218          */
219         if (ipv6) {
220                 struct ip6_frag *fraghdr = (struct ip6_frag *)(ip_frame + IP6_HLEN);
221                 ((struct sockaddr_in6 *)addr)->sin6_port = 0;
222                 memset(ip6hdr, 0, sizeof(*ip6hdr));
223                 ip6hdr->ip6_flow = htonl(6<<28);  /* Version. */
224                 ip6hdr->ip6_nxt = IPPROTO_FRAGMENT;
225                 ip6hdr->ip6_hops = 255;
226                 ip6hdr->ip6_src = addr6;
227                 ip6hdr->ip6_dst = addr6;
228                 fraghdr->ip6f_nxt = IPPROTO_UDP;
229                 fraghdr->ip6f_reserved = 0;
230                 fraghdr->ip6f_ident = htonl(ip_id++);
231         } else {
232                 memset(iphdr, 0, sizeof(*iphdr));
233                 iphdr->ip_hl = 5;
234                 iphdr->ip_v = 4;
235                 iphdr->ip_tos = 0;
236                 iphdr->ip_id = htons(ip_id++);
237                 iphdr->ip_ttl = 0x40;
238                 iphdr->ip_p = IPPROTO_UDP;
239                 iphdr->ip_src.s_addr = htonl(INADDR_LOOPBACK);
240                 iphdr->ip_dst = addr4;
241                 iphdr->ip_sum = 0;
242         }
243 
244         /* Occasionally test in-order fragments. */
245         if (!cfg_overlap && (rand() % 100 < 15)) {
246                 offset = 0;
247                 while (offset < (UDP_HLEN + payload_len)) {
248                         send_fragment(fd_raw, addr, alen, offset, ipv6);
249                         offset += max_frag_len;
250                 }
251                 return;
252         }
253 
254         /* Occasionally test IPv4 "runs" (see net/ipv4/ip_fragment.c) */
255         if (!cfg_overlap && (rand() % 100 < 20) &&
256                         (payload_len > 9 * max_frag_len)) {
257                 offset = 6 * max_frag_len;
258                 while (offset < (UDP_HLEN + payload_len)) {
259                         send_fragment(fd_raw, addr, alen, offset, ipv6);
260                         offset += max_frag_len;
261                 }
262                 offset = 3 * max_frag_len;
263                 while (offset < 6 * max_frag_len) {
264                         send_fragment(fd_raw, addr, alen, offset, ipv6);
265                         offset += max_frag_len;
266                 }
267                 offset = 0;
268                 while (offset < 3 * max_frag_len) {
269                         send_fragment(fd_raw, addr, alen, offset, ipv6);
270                         offset += max_frag_len;
271                 }
272                 return;
273         }
274 
275         /* Odd fragments. */
276         offset = max_frag_len;
277         while (offset < (UDP_HLEN + payload_len)) {
278                 send_fragment(fd_raw, addr, alen, offset, ipv6);
279                 /* IPv4 ignores duplicates, so randomly send a duplicate. */
280                 if (rand() % 100 == 1)
281                         send_fragment(fd_raw, addr, alen, offset, ipv6);
282                 offset += 2 * max_frag_len;
283         }
284 
285         if (cfg_overlap) {
286                 /* Send an extra random fragment.
287                  *
288                  * Duplicates and some fragments completely inside
289                  * previously sent fragments are dropped/ignored. So
290                  * random offset and frag_len can result in a dropped
291                  * fragment instead of a dropped queue/packet. Thus we
292                  * hard-code offset and frag_len.
293                  */
294                 if (max_frag_len * 4 < payload_len || max_frag_len < 16) {
295                         /* not enough payload for random offset and frag_len. */
296                         offset = 8;
297                         frag_len = UDP_HLEN + max_frag_len;
298                 } else {
299                         offset = rand() % (payload_len / 2);
300                         frag_len = 2 * max_frag_len + 1 + rand() % 256;
301                 }
302                 if (ipv6) {
303                         struct ip6_frag *fraghdr = (struct ip6_frag *)(ip_frame + IP6_HLEN);
304                         /* sendto() returns EINVAL if offset + frag_len is too small. */
305                         /* In IPv6 if !!(frag_len % 8), the fragment is dropped. */
306                         frag_len &= ~0x7;
307                         fraghdr->ip6f_offlg = htons(offset / 8 | IP6_MF);
308                         ip6hdr->ip6_plen = htons(frag_len);
309                         frag_len += IP6_HLEN;
310                 } else {
311                         frag_len += IP4_HLEN;
312                         iphdr->ip_off = htons(offset / 8 | IP4_MF);
313                         iphdr->ip_len = htons(frag_len);
314                 }
315                 res = sendto(fd_raw, ip_frame, frag_len, 0, addr, alen);
316                 if (res < 0 && errno != EPERM)
317                         error(1, errno, "sendto overlap: %d", frag_len);
318                 if (res >= 0 && res != frag_len)
319                         error(1, 0, "sendto overlap: %d vs %d", (int)res, frag_len);
320                 frag_counter++;
321         }
322 
323         /* Event fragments. */
324         offset = 0;
325         while (offset < (UDP_HLEN + payload_len)) {
326                 send_fragment(fd_raw, addr, alen, offset, ipv6);
327                 /* IPv4 ignores duplicates, so randomly send a duplicate. */
328                 if (rand() % 100 == 1)
329                         send_fragment(fd_raw, addr, alen, offset, ipv6);
330                 offset += 2 * max_frag_len;
331         }
332 }
333 
334 static void run_test(struct sockaddr *addr, socklen_t alen, bool ipv6)
335 {
336         int fd_tx_raw, fd_rx_udp;
337         /* Frag queue timeout is set to one second in the calling script;
338          * socket timeout should be just a bit longer to avoid tests interfering
339          * with each other.
340          */
341         struct timeval tv = { .tv_sec = 1, .tv_usec = 10 };
342         int idx;
343         int min_frag_len = 8;
344 
345         /* Initialize the payload. */
346         for (idx = 0; idx < MSG_LEN_MAX; ++idx)
347                 udp_payload[idx] = idx % 256;
348 
349         /* Open sockets. */
350         fd_tx_raw = socket(addr->sa_family, SOCK_RAW, IPPROTO_RAW);
351         if (fd_tx_raw == -1)
352                 error(1, errno, "socket tx_raw");
353 
354         fd_rx_udp = socket(addr->sa_family, SOCK_DGRAM, 0);
355         if (fd_rx_udp == -1)
356                 error(1, errno, "socket rx_udp");
357         if (bind(fd_rx_udp, addr, alen))
358                 error(1, errno, "bind");
359         /* Fail fast. */
360         if (setsockopt(fd_rx_udp, SOL_SOCKET, SO_RCVTIMEO, &tv, sizeof(tv)))
361                 error(1, errno, "setsockopt rcv timeout");
362 
363         for (payload_len = min_frag_len; payload_len < MSG_LEN_MAX;
364                         payload_len += (rand() % 4096)) {
365                 if (cfg_verbose)
366                         printf("payload_len: %d\n", payload_len);
367 
368                 if (cfg_overlap) {
369                         /* With overlaps, one send/receive pair below takes
370                          * at least one second (== timeout) to run, so there
371                          * is not enough test time to run a nested loop:
372                          * the full overlap test takes 20-30 seconds.
373                          */
374                         max_frag_len = min_frag_len +
375                                 rand() % (1500 - FRAG_HLEN - min_frag_len);
376                         send_udp_frags(fd_tx_raw, addr, alen, ipv6);
377                         recv_validate_udp(fd_rx_udp);
378                 } else {
379                         /* Without overlaps, each packet reassembly (== one
380                          * send/receive pair below) takes very little time to
381                          * run, so we can easily afford more thourough testing
382                          * with a nested loop: the full non-overlap test takes
383                          * less than one second).
384                          */
385                         max_frag_len = min_frag_len;
386                         do {
387                                 send_udp_frags(fd_tx_raw, addr, alen, ipv6);
388                                 recv_validate_udp(fd_rx_udp);
389                                 max_frag_len += 8 * (rand() % 8);
390                         } while (max_frag_len < (1500 - FRAG_HLEN) &&
391                                  max_frag_len <= payload_len);
392                 }
393         }
394 
395         /* Cleanup. */
396         if (close(fd_tx_raw))
397                 error(1, errno, "close tx_raw");
398         if (close(fd_rx_udp))
399                 error(1, errno, "close rx_udp");
400 
401         if (cfg_verbose)
402                 printf("processed %d messages, %d fragments\n",
403                         msg_counter, frag_counter);
404 
405         fprintf(stderr, "PASS\n");
406 }
407 
408 
409 static void run_test_v4(void)
410 {
411         struct sockaddr_in addr = {0};
412 
413         addr.sin_family = AF_INET;
414         addr.sin_port = htons(cfg_port);
415         addr.sin_addr = addr4;
416 
417         run_test((void *)&addr, sizeof(addr), false /* !ipv6 */);
418 }
419 
420 static void run_test_v6(void)
421 {
422         struct sockaddr_in6 addr = {0};
423 
424         addr.sin6_family = AF_INET6;
425         addr.sin6_port = htons(cfg_port);
426         addr.sin6_addr = addr6;
427 
428         run_test((void *)&addr, sizeof(addr), true /* ipv6 */);
429 }
430 
431 static void parse_opts(int argc, char **argv)
432 {
433         int c;
434 
435         while ((c = getopt(argc, argv, "46opv")) != -1) {
436                 switch (c) {
437                 case '4':
438                         cfg_do_ipv4 = true;
439                         break;
440                 case '6':
441                         cfg_do_ipv6 = true;
442                         break;
443                 case 'o':
444                         cfg_overlap = true;
445                         break;
446                 case 'p':
447                         cfg_permissive = true;
448                         break;
449                 case 'v':
450                         cfg_verbose = true;
451                         break;
452                 default:
453                         error(1, 0, "%s: parse error", argv[0]);
454                 }
455         }
456 }
457 
458 int main(int argc, char **argv)
459 {
460         parse_opts(argc, argv);
461         seed = time(NULL);
462         srand(seed);
463         /* Print the seed to track/reproduce potential failures. */
464         printf("seed = %d\n", seed);
465 
466         if (cfg_do_ipv4)
467                 run_test_v4();
468         if (cfg_do_ipv6)
469                 run_test_v6();
470 
471         return 0;
472 }
473 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php