~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/tools/testing/vsock/util.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * vsock test utilities
  4  *
  5  * Copyright (C) 2017 Red Hat, Inc.
  6  *
  7  * Author: Stefan Hajnoczi <stefanha@redhat.com>
  8  */
  9 
 10 #include <errno.h>
 11 #include <stdio.h>
 12 #include <stdint.h>
 13 #include <stdlib.h>
 14 #include <string.h>
 15 #include <signal.h>
 16 #include <unistd.h>
 17 #include <assert.h>
 18 #include <sys/epoll.h>
 19 #include <sys/mman.h>
 20 
 21 #include "timeout.h"
 22 #include "control.h"
 23 #include "util.h"
 24 
 25 /* Install signal handlers */
 26 void init_signals(void)
 27 {
 28         struct sigaction act = {
 29                 .sa_handler = sigalrm,
 30         };
 31 
 32         sigaction(SIGALRM, &act, NULL);
 33         signal(SIGPIPE, SIG_IGN);
 34 }
 35 
 36 static unsigned int parse_uint(const char *str, const char *err_str)
 37 {
 38         char *endptr = NULL;
 39         unsigned long n;
 40 
 41         errno = 0;
 42         n = strtoul(str, &endptr, 10);
 43         if (errno || *endptr != '\0') {
 44                 fprintf(stderr, "malformed %s \"%s\"\n", err_str, str);
 45                 exit(EXIT_FAILURE);
 46         }
 47         return n;
 48 }
 49 
 50 /* Parse a CID in string representation */
 51 unsigned int parse_cid(const char *str)
 52 {
 53         return parse_uint(str, "CID");
 54 }
 55 
 56 /* Parse a port in string representation */
 57 unsigned int parse_port(const char *str)
 58 {
 59         return parse_uint(str, "port");
 60 }
 61 
 62 /* Wait for the remote to close the connection */
 63 void vsock_wait_remote_close(int fd)
 64 {
 65         struct epoll_event ev;
 66         int epollfd, nfds;
 67 
 68         epollfd = epoll_create1(0);
 69         if (epollfd == -1) {
 70                 perror("epoll_create1");
 71                 exit(EXIT_FAILURE);
 72         }
 73 
 74         ev.events = EPOLLRDHUP | EPOLLHUP;
 75         ev.data.fd = fd;
 76         if (epoll_ctl(epollfd, EPOLL_CTL_ADD, fd, &ev) == -1) {
 77                 perror("epoll_ctl");
 78                 exit(EXIT_FAILURE);
 79         }
 80 
 81         nfds = epoll_wait(epollfd, &ev, 1, TIMEOUT * 1000);
 82         if (nfds == -1) {
 83                 perror("epoll_wait");
 84                 exit(EXIT_FAILURE);
 85         }
 86 
 87         if (nfds == 0) {
 88                 fprintf(stderr, "epoll_wait timed out\n");
 89                 exit(EXIT_FAILURE);
 90         }
 91 
 92         assert(nfds == 1);
 93         assert(ev.events & (EPOLLRDHUP | EPOLLHUP));
 94         assert(ev.data.fd == fd);
 95 
 96         close(epollfd);
 97 }
 98 
 99 /* Bind to <bind_port>, connect to <cid, port> and return the file descriptor. */
100 int vsock_bind_connect(unsigned int cid, unsigned int port, unsigned int bind_port, int type)
101 {
102         struct sockaddr_vm sa_client = {
103                 .svm_family = AF_VSOCK,
104                 .svm_cid = VMADDR_CID_ANY,
105                 .svm_port = bind_port,
106         };
107         struct sockaddr_vm sa_server = {
108                 .svm_family = AF_VSOCK,
109                 .svm_cid = cid,
110                 .svm_port = port,
111         };
112 
113         int client_fd, ret;
114 
115         client_fd = socket(AF_VSOCK, type, 0);
116         if (client_fd < 0) {
117                 perror("socket");
118                 exit(EXIT_FAILURE);
119         }
120 
121         if (bind(client_fd, (struct sockaddr *)&sa_client, sizeof(sa_client))) {
122                 perror("bind");
123                 exit(EXIT_FAILURE);
124         }
125 
126         timeout_begin(TIMEOUT);
127         do {
128                 ret = connect(client_fd, (struct sockaddr *)&sa_server, sizeof(sa_server));
129                 timeout_check("connect");
130         } while (ret < 0 && errno == EINTR);
131         timeout_end();
132 
133         if (ret < 0) {
134                 perror("connect");
135                 exit(EXIT_FAILURE);
136         }
137 
138         return client_fd;
139 }
140 
141 /* Connect to <cid, port> and return the file descriptor. */
142 static int vsock_connect(unsigned int cid, unsigned int port, int type)
143 {
144         union {
145                 struct sockaddr sa;
146                 struct sockaddr_vm svm;
147         } addr = {
148                 .svm = {
149                         .svm_family = AF_VSOCK,
150                         .svm_port = port,
151                         .svm_cid = cid,
152                 },
153         };
154         int ret;
155         int fd;
156 
157         control_expectln("LISTENING");
158 
159         fd = socket(AF_VSOCK, type, 0);
160         if (fd < 0) {
161                 perror("socket");
162                 exit(EXIT_FAILURE);
163         }
164 
165         timeout_begin(TIMEOUT);
166         do {
167                 ret = connect(fd, &addr.sa, sizeof(addr.svm));
168                 timeout_check("connect");
169         } while (ret < 0 && errno == EINTR);
170         timeout_end();
171 
172         if (ret < 0) {
173                 int old_errno = errno;
174 
175                 close(fd);
176                 fd = -1;
177                 errno = old_errno;
178         }
179         return fd;
180 }
181 
182 int vsock_stream_connect(unsigned int cid, unsigned int port)
183 {
184         return vsock_connect(cid, port, SOCK_STREAM);
185 }
186 
187 int vsock_seqpacket_connect(unsigned int cid, unsigned int port)
188 {
189         return vsock_connect(cid, port, SOCK_SEQPACKET);
190 }
191 
192 /* Listen on <cid, port> and return the file descriptor. */
193 static int vsock_listen(unsigned int cid, unsigned int port, int type)
194 {
195         union {
196                 struct sockaddr sa;
197                 struct sockaddr_vm svm;
198         } addr = {
199                 .svm = {
200                         .svm_family = AF_VSOCK,
201                         .svm_port = port,
202                         .svm_cid = cid,
203                 },
204         };
205         int fd;
206 
207         fd = socket(AF_VSOCK, type, 0);
208         if (fd < 0) {
209                 perror("socket");
210                 exit(EXIT_FAILURE);
211         }
212 
213         if (bind(fd, &addr.sa, sizeof(addr.svm)) < 0) {
214                 perror("bind");
215                 exit(EXIT_FAILURE);
216         }
217 
218         if (listen(fd, 1) < 0) {
219                 perror("listen");
220                 exit(EXIT_FAILURE);
221         }
222 
223         return fd;
224 }
225 
226 /* Listen on <cid, port> and return the first incoming connection.  The remote
227  * address is stored to clientaddrp.  clientaddrp may be NULL.
228  */
229 static int vsock_accept(unsigned int cid, unsigned int port,
230                         struct sockaddr_vm *clientaddrp, int type)
231 {
232         union {
233                 struct sockaddr sa;
234                 struct sockaddr_vm svm;
235         } clientaddr;
236         socklen_t clientaddr_len = sizeof(clientaddr.svm);
237         int fd, client_fd, old_errno;
238 
239         fd = vsock_listen(cid, port, type);
240 
241         control_writeln("LISTENING");
242 
243         timeout_begin(TIMEOUT);
244         do {
245                 client_fd = accept(fd, &clientaddr.sa, &clientaddr_len);
246                 timeout_check("accept");
247         } while (client_fd < 0 && errno == EINTR);
248         timeout_end();
249 
250         old_errno = errno;
251         close(fd);
252         errno = old_errno;
253 
254         if (client_fd < 0)
255                 return client_fd;
256 
257         if (clientaddr_len != sizeof(clientaddr.svm)) {
258                 fprintf(stderr, "unexpected addrlen from accept(2), %zu\n",
259                         (size_t)clientaddr_len);
260                 exit(EXIT_FAILURE);
261         }
262         if (clientaddr.sa.sa_family != AF_VSOCK) {
263                 fprintf(stderr, "expected AF_VSOCK from accept(2), got %d\n",
264                         clientaddr.sa.sa_family);
265                 exit(EXIT_FAILURE);
266         }
267 
268         if (clientaddrp)
269                 *clientaddrp = clientaddr.svm;
270         return client_fd;
271 }
272 
273 int vsock_stream_accept(unsigned int cid, unsigned int port,
274                         struct sockaddr_vm *clientaddrp)
275 {
276         return vsock_accept(cid, port, clientaddrp, SOCK_STREAM);
277 }
278 
279 int vsock_stream_listen(unsigned int cid, unsigned int port)
280 {
281         return vsock_listen(cid, port, SOCK_STREAM);
282 }
283 
284 int vsock_seqpacket_accept(unsigned int cid, unsigned int port,
285                            struct sockaddr_vm *clientaddrp)
286 {
287         return vsock_accept(cid, port, clientaddrp, SOCK_SEQPACKET);
288 }
289 
290 /* Transmit bytes from a buffer and check the return value.
291  *
292  * expected_ret:
293  *  <0 Negative errno (for testing errors)
294  *   0 End-of-file
295  *  >0 Success (bytes successfully written)
296  */
297 void send_buf(int fd, const void *buf, size_t len, int flags,
298               ssize_t expected_ret)
299 {
300         ssize_t nwritten = 0;
301         ssize_t ret;
302 
303         timeout_begin(TIMEOUT);
304         do {
305                 ret = send(fd, buf + nwritten, len - nwritten, flags);
306                 timeout_check("send");
307 
308                 if (ret == 0 || (ret < 0 && errno != EINTR))
309                         break;
310 
311                 nwritten += ret;
312         } while (nwritten < len);
313         timeout_end();
314 
315         if (expected_ret < 0) {
316                 if (ret != -1) {
317                         fprintf(stderr, "bogus send(2) return value %zd (expected %zd)\n",
318                                 ret, expected_ret);
319                         exit(EXIT_FAILURE);
320                 }
321                 if (errno != -expected_ret) {
322                         perror("send");
323                         exit(EXIT_FAILURE);
324                 }
325                 return;
326         }
327 
328         if (ret < 0) {
329                 perror("send");
330                 exit(EXIT_FAILURE);
331         }
332 
333         if (nwritten != expected_ret) {
334                 if (ret == 0)
335                         fprintf(stderr, "unexpected EOF while sending bytes\n");
336 
337                 fprintf(stderr, "bogus send(2) bytes written %zd (expected %zd)\n",
338                         nwritten, expected_ret);
339                 exit(EXIT_FAILURE);
340         }
341 }
342 
343 /* Receive bytes in a buffer and check the return value.
344  *
345  * expected_ret:
346  *  <0 Negative errno (for testing errors)
347  *   0 End-of-file
348  *  >0 Success (bytes successfully read)
349  */
350 void recv_buf(int fd, void *buf, size_t len, int flags, ssize_t expected_ret)
351 {
352         ssize_t nread = 0;
353         ssize_t ret;
354 
355         timeout_begin(TIMEOUT);
356         do {
357                 ret = recv(fd, buf + nread, len - nread, flags);
358                 timeout_check("recv");
359 
360                 if (ret == 0 || (ret < 0 && errno != EINTR))
361                         break;
362 
363                 nread += ret;
364         } while (nread < len);
365         timeout_end();
366 
367         if (expected_ret < 0) {
368                 if (ret != -1) {
369                         fprintf(stderr, "bogus recv(2) return value %zd (expected %zd)\n",
370                                 ret, expected_ret);
371                         exit(EXIT_FAILURE);
372                 }
373                 if (errno != -expected_ret) {
374                         perror("recv");
375                         exit(EXIT_FAILURE);
376                 }
377                 return;
378         }
379 
380         if (ret < 0) {
381                 perror("recv");
382                 exit(EXIT_FAILURE);
383         }
384 
385         if (nread != expected_ret) {
386                 if (ret == 0)
387                         fprintf(stderr, "unexpected EOF while receiving bytes\n");
388 
389                 fprintf(stderr, "bogus recv(2) bytes read %zd (expected %zd)\n",
390                         nread, expected_ret);
391                 exit(EXIT_FAILURE);
392         }
393 }
394 
395 /* Transmit one byte and check the return value.
396  *
397  * expected_ret:
398  *  <0 Negative errno (for testing errors)
399  *   0 End-of-file
400  *   1 Success
401  */
402 void send_byte(int fd, int expected_ret, int flags)
403 {
404         const uint8_t byte = 'A';
405 
406         send_buf(fd, &byte, sizeof(byte), flags, expected_ret);
407 }
408 
409 /* Receive one byte and check the return value.
410  *
411  * expected_ret:
412  *  <0 Negative errno (for testing errors)
413  *   0 End-of-file
414  *   1 Success
415  */
416 void recv_byte(int fd, int expected_ret, int flags)
417 {
418         uint8_t byte;
419 
420         recv_buf(fd, &byte, sizeof(byte), flags, expected_ret);
421 
422         if (byte != 'A') {
423                 fprintf(stderr, "unexpected byte read %c\n", byte);
424                 exit(EXIT_FAILURE);
425         }
426 }
427 
428 /* Run test cases.  The program terminates if a failure occurs. */
429 void run_tests(const struct test_case *test_cases,
430                const struct test_opts *opts)
431 {
432         int i;
433 
434         for (i = 0; test_cases[i].name; i++) {
435                 void (*run)(const struct test_opts *opts);
436                 char *line;
437 
438                 printf("%d - %s...", i, test_cases[i].name);
439                 fflush(stdout);
440 
441                 /* Full barrier before executing the next test.  This
442                  * ensures that client and server are executing the
443                  * same test case.  In particular, it means whoever is
444                  * faster will not see the peer still executing the
445                  * last test.  This is important because port numbers
446                  * can be used by multiple test cases.
447                  */
448                 if (test_cases[i].skip)
449                         control_writeln("SKIP");
450                 else
451                         control_writeln("NEXT");
452 
453                 line = control_readln();
454                 if (control_cmpln(line, "SKIP", false) || test_cases[i].skip) {
455 
456                         printf("skipped\n");
457 
458                         free(line);
459                         continue;
460                 }
461 
462                 control_cmpln(line, "NEXT", true);
463                 free(line);
464 
465                 if (opts->mode == TEST_MODE_CLIENT)
466                         run = test_cases[i].run_client;
467                 else
468                         run = test_cases[i].run_server;
469 
470                 if (run)
471                         run(opts);
472 
473                 printf("ok\n");
474         }
475 }
476 
477 void list_tests(const struct test_case *test_cases)
478 {
479         int i;
480 
481         printf("ID\tTest name\n");
482 
483         for (i = 0; test_cases[i].name; i++)
484                 printf("%d\t%s\n", i, test_cases[i].name);
485 
486         exit(EXIT_FAILURE);
487 }
488 
489 void skip_test(struct test_case *test_cases, size_t test_cases_len,
490                const char *test_id_str)
491 {
492         unsigned long test_id;
493         char *endptr = NULL;
494 
495         errno = 0;
496         test_id = strtoul(test_id_str, &endptr, 10);
497         if (errno || *endptr != '\0') {
498                 fprintf(stderr, "malformed test ID \"%s\"\n", test_id_str);
499                 exit(EXIT_FAILURE);
500         }
501 
502         if (test_id >= test_cases_len) {
503                 fprintf(stderr, "test ID (%lu) larger than the max allowed (%lu)\n",
504                         test_id, test_cases_len - 1);
505                 exit(EXIT_FAILURE);
506         }
507 
508         test_cases[test_id].skip = true;
509 }
510 
511 unsigned long hash_djb2(const void *data, size_t len)
512 {
513         unsigned long hash = 5381;
514         int i = 0;
515 
516         while (i < len) {
517                 hash = ((hash << 5) + hash) + ((unsigned char *)data)[i];
518                 i++;
519         }
520 
521         return hash;
522 }
523 
524 size_t iovec_bytes(const struct iovec *iov, size_t iovnum)
525 {
526         size_t bytes;
527         int i;
528 
529         for (bytes = 0, i = 0; i < iovnum; i++)
530                 bytes += iov[i].iov_len;
531 
532         return bytes;
533 }
534 
535 unsigned long iovec_hash_djb2(const struct iovec *iov, size_t iovnum)
536 {
537         unsigned long hash;
538         size_t iov_bytes;
539         size_t offs;
540         void *tmp;
541         int i;
542 
543         iov_bytes = iovec_bytes(iov, iovnum);
544 
545         tmp = malloc(iov_bytes);
546         if (!tmp) {
547                 perror("malloc");
548                 exit(EXIT_FAILURE);
549         }
550 
551         for (offs = 0, i = 0; i < iovnum; i++) {
552                 memcpy(tmp + offs, iov[i].iov_base, iov[i].iov_len);
553                 offs += iov[i].iov_len;
554         }
555 
556         hash = hash_djb2(tmp, iov_bytes);
557         free(tmp);
558 
559         return hash;
560 }
561 
562 /* Allocates and returns new 'struct iovec *' according pattern
563  * in the 'test_iovec'. For each element in the 'test_iovec' it
564  * allocates new element in the resulting 'iovec'. 'iov_len'
565  * of the new element is copied from 'test_iovec'. 'iov_base' is
566  * allocated depending on the 'iov_base' of 'test_iovec':
567  *
568  * 'iov_base' == NULL -> valid buf: mmap('iov_len').
569  *
570  * 'iov_base' == MAP_FAILED -> invalid buf:
571  *               mmap('iov_len'), then munmap('iov_len').
572  *               'iov_base' still contains result of
573  *               mmap().
574  *
575  * 'iov_base' == number -> unaligned valid buf:
576  *               mmap('iov_len') + number.
577  *
578  * 'iovnum' is number of elements in 'test_iovec'.
579  *
580  * Returns new 'iovec' or calls 'exit()' on error.
581  */
582 struct iovec *alloc_test_iovec(const struct iovec *test_iovec, int iovnum)
583 {
584         struct iovec *iovec;
585         int i;
586 
587         iovec = malloc(sizeof(*iovec) * iovnum);
588         if (!iovec) {
589                 perror("malloc");
590                 exit(EXIT_FAILURE);
591         }
592 
593         for (i = 0; i < iovnum; i++) {
594                 iovec[i].iov_len = test_iovec[i].iov_len;
595 
596                 iovec[i].iov_base = mmap(NULL, iovec[i].iov_len,
597                                          PROT_READ | PROT_WRITE,
598                                          MAP_PRIVATE | MAP_ANONYMOUS | MAP_POPULATE,
599                                          -1, 0);
600                 if (iovec[i].iov_base == MAP_FAILED) {
601                         perror("mmap");
602                         exit(EXIT_FAILURE);
603                 }
604 
605                 if (test_iovec[i].iov_base != MAP_FAILED)
606                         iovec[i].iov_base += (uintptr_t)test_iovec[i].iov_base;
607         }
608 
609         /* Unmap "invalid" elements. */
610         for (i = 0; i < iovnum; i++) {
611                 if (test_iovec[i].iov_base == MAP_FAILED) {
612                         if (munmap(iovec[i].iov_base, iovec[i].iov_len)) {
613                                 perror("munmap");
614                                 exit(EXIT_FAILURE);
615                         }
616                 }
617         }
618 
619         for (i = 0; i < iovnum; i++) {
620                 int j;
621 
622                 if (test_iovec[i].iov_base == MAP_FAILED)
623                         continue;
624 
625                 for (j = 0; j < iovec[i].iov_len; j++)
626                         ((uint8_t *)iovec[i].iov_base)[j] = rand() & 0xff;
627         }
628 
629         return iovec;
630 }
631 
632 /* Frees 'iovec *', previously allocated by 'alloc_test_iovec()'.
633  * On error calls 'exit()'.
634  */
635 void free_test_iovec(const struct iovec *test_iovec,
636                      struct iovec *iovec, int iovnum)
637 {
638         int i;
639 
640         for (i = 0; i < iovnum; i++) {
641                 if (test_iovec[i].iov_base != MAP_FAILED) {
642                         if (test_iovec[i].iov_base)
643                                 iovec[i].iov_base -= (uintptr_t)test_iovec[i].iov_base;
644 
645                         if (munmap(iovec[i].iov_base, iovec[i].iov_len)) {
646                                 perror("munmap");
647                                 exit(EXIT_FAILURE);
648                         }
649                 }
650         }
651 
652         free(iovec);
653 }
654 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php