1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * vsock test utilities 4 * 5 * Copyright (C) 2017 Red Hat, Inc. 6 * 7 * Author: Stefan Hajnoczi <stefanha@redhat.com> 8 */ 9 10 #include <errno.h> 11 #include <stdio.h> 12 #include <stdint.h> 13 #include <stdlib.h> 14 #include <string.h> 15 #include <signal.h> 16 #include <unistd.h> 17 #include <assert.h> 18 #include <sys/epoll.h> 19 #include <sys/mman.h> 20 21 #include "timeout.h" 22 #include "control.h" 23 #include "util.h" 24 25 /* Install signal handlers */ 26 void init_signals(void) 27 { 28 struct sigaction act = { 29 .sa_handler = sigalrm, 30 }; 31 32 sigaction(SIGALRM, &act, NULL); 33 signal(SIGPIPE, SIG_IGN); 34 } 35 36 static unsigned int parse_uint(const char *str, const char *err_str) 37 { 38 char *endptr = NULL; 39 unsigned long n; 40 41 errno = 0; 42 n = strtoul(str, &endptr, 10); 43 if (errno || *endptr != '\0') { 44 fprintf(stderr, "malformed %s \"%s\"\n", err_str, str); 45 exit(EXIT_FAILURE); 46 } 47 return n; 48 } 49 50 /* Parse a CID in string representation */ 51 unsigned int parse_cid(const char *str) 52 { 53 return parse_uint(str, "CID"); 54 } 55 56 /* Parse a port in string representation */ 57 unsigned int parse_port(const char *str) 58 { 59 return parse_uint(str, "port"); 60 } 61 62 /* Wait for the remote to close the connection */ 63 void vsock_wait_remote_close(int fd) 64 { 65 struct epoll_event ev; 66 int epollfd, nfds; 67 68 epollfd = epoll_create1(0); 69 if (epollfd == -1) { 70 perror("epoll_create1"); 71 exit(EXIT_FAILURE); 72 } 73 74 ev.events = EPOLLRDHUP | EPOLLHUP; 75 ev.data.fd = fd; 76 if (epoll_ctl(epollfd, EPOLL_CTL_ADD, fd, &ev) == -1) { 77 perror("epoll_ctl"); 78 exit(EXIT_FAILURE); 79 } 80 81 nfds = epoll_wait(epollfd, &ev, 1, TIMEOUT * 1000); 82 if (nfds == -1) { 83 perror("epoll_wait"); 84 exit(EXIT_FAILURE); 85 } 86 87 if (nfds == 0) { 88 fprintf(stderr, "epoll_wait timed out\n"); 89 exit(EXIT_FAILURE); 90 } 91 92 assert(nfds == 1); 93 assert(ev.events & (EPOLLRDHUP | EPOLLHUP)); 94 assert(ev.data.fd == fd); 95 96 close(epollfd); 97 } 98 99 /* Bind to <bind_port>, connect to <cid, port> and return the file descriptor. */ 100 int vsock_bind_connect(unsigned int cid, unsigned int port, unsigned int bind_port, int type) 101 { 102 struct sockaddr_vm sa_client = { 103 .svm_family = AF_VSOCK, 104 .svm_cid = VMADDR_CID_ANY, 105 .svm_port = bind_port, 106 }; 107 struct sockaddr_vm sa_server = { 108 .svm_family = AF_VSOCK, 109 .svm_cid = cid, 110 .svm_port = port, 111 }; 112 113 int client_fd, ret; 114 115 client_fd = socket(AF_VSOCK, type, 0); 116 if (client_fd < 0) { 117 perror("socket"); 118 exit(EXIT_FAILURE); 119 } 120 121 if (bind(client_fd, (struct sockaddr *)&sa_client, sizeof(sa_client))) { 122 perror("bind"); 123 exit(EXIT_FAILURE); 124 } 125 126 timeout_begin(TIMEOUT); 127 do { 128 ret = connect(client_fd, (struct sockaddr *)&sa_server, sizeof(sa_server)); 129 timeout_check("connect"); 130 } while (ret < 0 && errno == EINTR); 131 timeout_end(); 132 133 if (ret < 0) { 134 perror("connect"); 135 exit(EXIT_FAILURE); 136 } 137 138 return client_fd; 139 } 140 141 /* Connect to <cid, port> and return the file descriptor. */ 142 static int vsock_connect(unsigned int cid, unsigned int port, int type) 143 { 144 union { 145 struct sockaddr sa; 146 struct sockaddr_vm svm; 147 } addr = { 148 .svm = { 149 .svm_family = AF_VSOCK, 150 .svm_port = port, 151 .svm_cid = cid, 152 }, 153 }; 154 int ret; 155 int fd; 156 157 control_expectln("LISTENING"); 158 159 fd = socket(AF_VSOCK, type, 0); 160 if (fd < 0) { 161 perror("socket"); 162 exit(EXIT_FAILURE); 163 } 164 165 timeout_begin(TIMEOUT); 166 do { 167 ret = connect(fd, &addr.sa, sizeof(addr.svm)); 168 timeout_check("connect"); 169 } while (ret < 0 && errno == EINTR); 170 timeout_end(); 171 172 if (ret < 0) { 173 int old_errno = errno; 174 175 close(fd); 176 fd = -1; 177 errno = old_errno; 178 } 179 return fd; 180 } 181 182 int vsock_stream_connect(unsigned int cid, unsigned int port) 183 { 184 return vsock_connect(cid, port, SOCK_STREAM); 185 } 186 187 int vsock_seqpacket_connect(unsigned int cid, unsigned int port) 188 { 189 return vsock_connect(cid, port, SOCK_SEQPACKET); 190 } 191 192 /* Listen on <cid, port> and return the file descriptor. */ 193 static int vsock_listen(unsigned int cid, unsigned int port, int type) 194 { 195 union { 196 struct sockaddr sa; 197 struct sockaddr_vm svm; 198 } addr = { 199 .svm = { 200 .svm_family = AF_VSOCK, 201 .svm_port = port, 202 .svm_cid = cid, 203 }, 204 }; 205 int fd; 206 207 fd = socket(AF_VSOCK, type, 0); 208 if (fd < 0) { 209 perror("socket"); 210 exit(EXIT_FAILURE); 211 } 212 213 if (bind(fd, &addr.sa, sizeof(addr.svm)) < 0) { 214 perror("bind"); 215 exit(EXIT_FAILURE); 216 } 217 218 if (listen(fd, 1) < 0) { 219 perror("listen"); 220 exit(EXIT_FAILURE); 221 } 222 223 return fd; 224 } 225 226 /* Listen on <cid, port> and return the first incoming connection. The remote 227 * address is stored to clientaddrp. clientaddrp may be NULL. 228 */ 229 static int vsock_accept(unsigned int cid, unsigned int port, 230 struct sockaddr_vm *clientaddrp, int type) 231 { 232 union { 233 struct sockaddr sa; 234 struct sockaddr_vm svm; 235 } clientaddr; 236 socklen_t clientaddr_len = sizeof(clientaddr.svm); 237 int fd, client_fd, old_errno; 238 239 fd = vsock_listen(cid, port, type); 240 241 control_writeln("LISTENING"); 242 243 timeout_begin(TIMEOUT); 244 do { 245 client_fd = accept(fd, &clientaddr.sa, &clientaddr_len); 246 timeout_check("accept"); 247 } while (client_fd < 0 && errno == EINTR); 248 timeout_end(); 249 250 old_errno = errno; 251 close(fd); 252 errno = old_errno; 253 254 if (client_fd < 0) 255 return client_fd; 256 257 if (clientaddr_len != sizeof(clientaddr.svm)) { 258 fprintf(stderr, "unexpected addrlen from accept(2), %zu\n", 259 (size_t)clientaddr_len); 260 exit(EXIT_FAILURE); 261 } 262 if (clientaddr.sa.sa_family != AF_VSOCK) { 263 fprintf(stderr, "expected AF_VSOCK from accept(2), got %d\n", 264 clientaddr.sa.sa_family); 265 exit(EXIT_FAILURE); 266 } 267 268 if (clientaddrp) 269 *clientaddrp = clientaddr.svm; 270 return client_fd; 271 } 272 273 int vsock_stream_accept(unsigned int cid, unsigned int port, 274 struct sockaddr_vm *clientaddrp) 275 { 276 return vsock_accept(cid, port, clientaddrp, SOCK_STREAM); 277 } 278 279 int vsock_stream_listen(unsigned int cid, unsigned int port) 280 { 281 return vsock_listen(cid, port, SOCK_STREAM); 282 } 283 284 int vsock_seqpacket_accept(unsigned int cid, unsigned int port, 285 struct sockaddr_vm *clientaddrp) 286 { 287 return vsock_accept(cid, port, clientaddrp, SOCK_SEQPACKET); 288 } 289 290 /* Transmit bytes from a buffer and check the return value. 291 * 292 * expected_ret: 293 * <0 Negative errno (for testing errors) 294 * 0 End-of-file 295 * >0 Success (bytes successfully written) 296 */ 297 void send_buf(int fd, const void *buf, size_t len, int flags, 298 ssize_t expected_ret) 299 { 300 ssize_t nwritten = 0; 301 ssize_t ret; 302 303 timeout_begin(TIMEOUT); 304 do { 305 ret = send(fd, buf + nwritten, len - nwritten, flags); 306 timeout_check("send"); 307 308 if (ret == 0 || (ret < 0 && errno != EINTR)) 309 break; 310 311 nwritten += ret; 312 } while (nwritten < len); 313 timeout_end(); 314 315 if (expected_ret < 0) { 316 if (ret != -1) { 317 fprintf(stderr, "bogus send(2) return value %zd (expected %zd)\n", 318 ret, expected_ret); 319 exit(EXIT_FAILURE); 320 } 321 if (errno != -expected_ret) { 322 perror("send"); 323 exit(EXIT_FAILURE); 324 } 325 return; 326 } 327 328 if (ret < 0) { 329 perror("send"); 330 exit(EXIT_FAILURE); 331 } 332 333 if (nwritten != expected_ret) { 334 if (ret == 0) 335 fprintf(stderr, "unexpected EOF while sending bytes\n"); 336 337 fprintf(stderr, "bogus send(2) bytes written %zd (expected %zd)\n", 338 nwritten, expected_ret); 339 exit(EXIT_FAILURE); 340 } 341 } 342 343 /* Receive bytes in a buffer and check the return value. 344 * 345 * expected_ret: 346 * <0 Negative errno (for testing errors) 347 * 0 End-of-file 348 * >0 Success (bytes successfully read) 349 */ 350 void recv_buf(int fd, void *buf, size_t len, int flags, ssize_t expected_ret) 351 { 352 ssize_t nread = 0; 353 ssize_t ret; 354 355 timeout_begin(TIMEOUT); 356 do { 357 ret = recv(fd, buf + nread, len - nread, flags); 358 timeout_check("recv"); 359 360 if (ret == 0 || (ret < 0 && errno != EINTR)) 361 break; 362 363 nread += ret; 364 } while (nread < len); 365 timeout_end(); 366 367 if (expected_ret < 0) { 368 if (ret != -1) { 369 fprintf(stderr, "bogus recv(2) return value %zd (expected %zd)\n", 370 ret, expected_ret); 371 exit(EXIT_FAILURE); 372 } 373 if (errno != -expected_ret) { 374 perror("recv"); 375 exit(EXIT_FAILURE); 376 } 377 return; 378 } 379 380 if (ret < 0) { 381 perror("recv"); 382 exit(EXIT_FAILURE); 383 } 384 385 if (nread != expected_ret) { 386 if (ret == 0) 387 fprintf(stderr, "unexpected EOF while receiving bytes\n"); 388 389 fprintf(stderr, "bogus recv(2) bytes read %zd (expected %zd)\n", 390 nread, expected_ret); 391 exit(EXIT_FAILURE); 392 } 393 } 394 395 /* Transmit one byte and check the return value. 396 * 397 * expected_ret: 398 * <0 Negative errno (for testing errors) 399 * 0 End-of-file 400 * 1 Success 401 */ 402 void send_byte(int fd, int expected_ret, int flags) 403 { 404 const uint8_t byte = 'A'; 405 406 send_buf(fd, &byte, sizeof(byte), flags, expected_ret); 407 } 408 409 /* Receive one byte and check the return value. 410 * 411 * expected_ret: 412 * <0 Negative errno (for testing errors) 413 * 0 End-of-file 414 * 1 Success 415 */ 416 void recv_byte(int fd, int expected_ret, int flags) 417 { 418 uint8_t byte; 419 420 recv_buf(fd, &byte, sizeof(byte), flags, expected_ret); 421 422 if (byte != 'A') { 423 fprintf(stderr, "unexpected byte read %c\n", byte); 424 exit(EXIT_FAILURE); 425 } 426 } 427 428 /* Run test cases. The program terminates if a failure occurs. */ 429 void run_tests(const struct test_case *test_cases, 430 const struct test_opts *opts) 431 { 432 int i; 433 434 for (i = 0; test_cases[i].name; i++) { 435 void (*run)(const struct test_opts *opts); 436 char *line; 437 438 printf("%d - %s...", i, test_cases[i].name); 439 fflush(stdout); 440 441 /* Full barrier before executing the next test. This 442 * ensures that client and server are executing the 443 * same test case. In particular, it means whoever is 444 * faster will not see the peer still executing the 445 * last test. This is important because port numbers 446 * can be used by multiple test cases. 447 */ 448 if (test_cases[i].skip) 449 control_writeln("SKIP"); 450 else 451 control_writeln("NEXT"); 452 453 line = control_readln(); 454 if (control_cmpln(line, "SKIP", false) || test_cases[i].skip) { 455 456 printf("skipped\n"); 457 458 free(line); 459 continue; 460 } 461 462 control_cmpln(line, "NEXT", true); 463 free(line); 464 465 if (opts->mode == TEST_MODE_CLIENT) 466 run = test_cases[i].run_client; 467 else 468 run = test_cases[i].run_server; 469 470 if (run) 471 run(opts); 472 473 printf("ok\n"); 474 } 475 } 476 477 void list_tests(const struct test_case *test_cases) 478 { 479 int i; 480 481 printf("ID\tTest name\n"); 482 483 for (i = 0; test_cases[i].name; i++) 484 printf("%d\t%s\n", i, test_cases[i].name); 485 486 exit(EXIT_FAILURE); 487 } 488 489 void skip_test(struct test_case *test_cases, size_t test_cases_len, 490 const char *test_id_str) 491 { 492 unsigned long test_id; 493 char *endptr = NULL; 494 495 errno = 0; 496 test_id = strtoul(test_id_str, &endptr, 10); 497 if (errno || *endptr != '\0') { 498 fprintf(stderr, "malformed test ID \"%s\"\n", test_id_str); 499 exit(EXIT_FAILURE); 500 } 501 502 if (test_id >= test_cases_len) { 503 fprintf(stderr, "test ID (%lu) larger than the max allowed (%lu)\n", 504 test_id, test_cases_len - 1); 505 exit(EXIT_FAILURE); 506 } 507 508 test_cases[test_id].skip = true; 509 } 510 511 unsigned long hash_djb2(const void *data, size_t len) 512 { 513 unsigned long hash = 5381; 514 int i = 0; 515 516 while (i < len) { 517 hash = ((hash << 5) + hash) + ((unsigned char *)data)[i]; 518 i++; 519 } 520 521 return hash; 522 } 523 524 size_t iovec_bytes(const struct iovec *iov, size_t iovnum) 525 { 526 size_t bytes; 527 int i; 528 529 for (bytes = 0, i = 0; i < iovnum; i++) 530 bytes += iov[i].iov_len; 531 532 return bytes; 533 } 534 535 unsigned long iovec_hash_djb2(const struct iovec *iov, size_t iovnum) 536 { 537 unsigned long hash; 538 size_t iov_bytes; 539 size_t offs; 540 void *tmp; 541 int i; 542 543 iov_bytes = iovec_bytes(iov, iovnum); 544 545 tmp = malloc(iov_bytes); 546 if (!tmp) { 547 perror("malloc"); 548 exit(EXIT_FAILURE); 549 } 550 551 for (offs = 0, i = 0; i < iovnum; i++) { 552 memcpy(tmp + offs, iov[i].iov_base, iov[i].iov_len); 553 offs += iov[i].iov_len; 554 } 555 556 hash = hash_djb2(tmp, iov_bytes); 557 free(tmp); 558 559 return hash; 560 } 561 562 /* Allocates and returns new 'struct iovec *' according pattern 563 * in the 'test_iovec'. For each element in the 'test_iovec' it 564 * allocates new element in the resulting 'iovec'. 'iov_len' 565 * of the new element is copied from 'test_iovec'. 'iov_base' is 566 * allocated depending on the 'iov_base' of 'test_iovec': 567 * 568 * 'iov_base' == NULL -> valid buf: mmap('iov_len'). 569 * 570 * 'iov_base' == MAP_FAILED -> invalid buf: 571 * mmap('iov_len'), then munmap('iov_len'). 572 * 'iov_base' still contains result of 573 * mmap(). 574 * 575 * 'iov_base' == number -> unaligned valid buf: 576 * mmap('iov_len') + number. 577 * 578 * 'iovnum' is number of elements in 'test_iovec'. 579 * 580 * Returns new 'iovec' or calls 'exit()' on error. 581 */ 582 struct iovec *alloc_test_iovec(const struct iovec *test_iovec, int iovnum) 583 { 584 struct iovec *iovec; 585 int i; 586 587 iovec = malloc(sizeof(*iovec) * iovnum); 588 if (!iovec) { 589 perror("malloc"); 590 exit(EXIT_FAILURE); 591 } 592 593 for (i = 0; i < iovnum; i++) { 594 iovec[i].iov_len = test_iovec[i].iov_len; 595 596 iovec[i].iov_base = mmap(NULL, iovec[i].iov_len, 597 PROT_READ | PROT_WRITE, 598 MAP_PRIVATE | MAP_ANONYMOUS | MAP_POPULATE, 599 -1, 0); 600 if (iovec[i].iov_base == MAP_FAILED) { 601 perror("mmap"); 602 exit(EXIT_FAILURE); 603 } 604 605 if (test_iovec[i].iov_base != MAP_FAILED) 606 iovec[i].iov_base += (uintptr_t)test_iovec[i].iov_base; 607 } 608 609 /* Unmap "invalid" elements. */ 610 for (i = 0; i < iovnum; i++) { 611 if (test_iovec[i].iov_base == MAP_FAILED) { 612 if (munmap(iovec[i].iov_base, iovec[i].iov_len)) { 613 perror("munmap"); 614 exit(EXIT_FAILURE); 615 } 616 } 617 } 618 619 for (i = 0; i < iovnum; i++) { 620 int j; 621 622 if (test_iovec[i].iov_base == MAP_FAILED) 623 continue; 624 625 for (j = 0; j < iovec[i].iov_len; j++) 626 ((uint8_t *)iovec[i].iov_base)[j] = rand() & 0xff; 627 } 628 629 return iovec; 630 } 631 632 /* Frees 'iovec *', previously allocated by 'alloc_test_iovec()'. 633 * On error calls 'exit()'. 634 */ 635 void free_test_iovec(const struct iovec *test_iovec, 636 struct iovec *iovec, int iovnum) 637 { 638 int i; 639 640 for (i = 0; i < iovnum; i++) { 641 if (test_iovec[i].iov_base != MAP_FAILED) { 642 if (test_iovec[i].iov_base) 643 iovec[i].iov_base -= (uintptr_t)test_iovec[i].iov_base; 644 645 if (munmap(iovec[i].iov_base, iovec[i].iov_len)) { 646 perror("munmap"); 647 exit(EXIT_FAILURE); 648 } 649 } 650 } 651 652 free(iovec); 653 } 654
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.