1 #!/usr/bin/env drgn 2 # 3 # Copyright (C) 2023 Tejun Heo <tj@kernel.org> 4 # Copyright (C) 2023 Meta Platforms, Inc. and affiliates. 5 6 desc = """ 7 This is a drgn script to show the current workqueue configuration. For more 8 info on drgn, visit https://github.com/osandov/drgn. 9 10 Affinity Scopes 11 =============== 12 13 Shows the CPUs that can be used for unbound workqueues and how they will be 14 grouped by each available affinity type. For each type: 15 16 nr_pods number of CPU pods in the affinity type 17 pod_cpus CPUs in each pod 18 pod_node NUMA node for memory allocation for each pod 19 cpu_pod pod that each CPU is associated to 20 21 Worker Pools 22 ============ 23 24 Lists all worker pools indexed by their ID. For each pool: 25 26 ref number of pool_workqueue's associated with this pool 27 nice nice value of the worker threads in the pool 28 idle number of idle workers 29 workers number of all workers 30 cpu CPU the pool is associated with (per-cpu pool) 31 cpus CPUs the workers in the pool can run on (unbound pool) 32 33 Workqueue CPU -> pool 34 ===================== 35 36 Lists all workqueues along with their type and worker pool association. For 37 each workqueue: 38 39 NAME TYPE[,FLAGS] POOL_ID... 40 41 NAME name of the workqueue 42 TYPE percpu, unbound or ordered 43 FLAGS S: strict affinity scope 44 POOL_ID worker pool ID associated with each possible CPU 45 """ 46 47 import sys 48 49 import drgn 50 from drgn.helpers.linux.list import list_for_each_entry,list_empty 51 from drgn.helpers.linux.percpu import per_cpu_ptr 52 from drgn.helpers.linux.cpumask import for_each_cpu,for_each_possible_cpu 53 from drgn.helpers.linux.nodemask import for_each_node 54 from drgn.helpers.linux.idr import idr_for_each 55 56 import argparse 57 parser = argparse.ArgumentParser(description=desc, 58 formatter_class=argparse.RawTextHelpFormatter) 59 args = parser.parse_args() 60 61 def err(s): 62 print(s, file=sys.stderr, flush=True) 63 sys.exit(1) 64 65 def cpumask_str(cpumask): 66 output = "" 67 base = 0 68 v = 0 69 for cpu in for_each_cpu(cpumask[0]): 70 while cpu - base >= 32: 71 output += f'{hex(v)} ' 72 base += 32 73 v = 0 74 v |= 1 << (cpu - base) 75 if v > 0: 76 output += f'{v:08x}' 77 return output.strip() 78 79 wq_type_len = 9 80 81 def wq_type_str(wq): 82 if wq.flags & WQ_BH: 83 return f'{"bh":{wq_type_len}}' 84 elif wq.flags & WQ_UNBOUND: 85 if wq.flags & WQ_ORDERED: 86 return f'{"ordered":{wq_type_len}}' 87 else: 88 if wq.unbound_attrs.affn_strict: 89 return f'{"unbound,S":{wq_type_len}}' 90 else: 91 return f'{"unbound":{wq_type_len}}' 92 else: 93 return f'{"percpu":{wq_type_len}}' 94 95 worker_pool_idr = prog['worker_pool_idr'] 96 workqueues = prog['workqueues'] 97 wq_unbound_cpumask = prog['wq_unbound_cpumask'] 98 wq_pod_types = prog['wq_pod_types'] 99 wq_affn_dfl = prog['wq_affn_dfl'] 100 wq_affn_names = prog['wq_affn_names'] 101 102 WQ_BH = prog['WQ_BH'] 103 WQ_UNBOUND = prog['WQ_UNBOUND'] 104 WQ_ORDERED = prog['__WQ_ORDERED'] 105 WQ_MEM_RECLAIM = prog['WQ_MEM_RECLAIM'] 106 107 WQ_AFFN_CPU = prog['WQ_AFFN_CPU'] 108 WQ_AFFN_SMT = prog['WQ_AFFN_SMT'] 109 WQ_AFFN_CACHE = prog['WQ_AFFN_CACHE'] 110 WQ_AFFN_NUMA = prog['WQ_AFFN_NUMA'] 111 WQ_AFFN_SYSTEM = prog['WQ_AFFN_SYSTEM'] 112 113 POOL_BH = prog['POOL_BH'] 114 115 WQ_NAME_LEN = prog['WQ_NAME_LEN'].value_() 116 cpumask_str_len = len(cpumask_str(wq_unbound_cpumask)) 117 118 print('Affinity Scopes') 119 print('===============') 120 121 print(f'wq_unbound_cpumask={cpumask_str(wq_unbound_cpumask)}') 122 123 def print_pod_type(pt): 124 print(f' nr_pods {pt.nr_pods.value_()}') 125 126 print(' pod_cpus', end='') 127 for pod in range(pt.nr_pods): 128 print(f' [{pod}]={cpumask_str(pt.pod_cpus[pod])}', end='') 129 print('') 130 131 print(' pod_node', end='') 132 for pod in range(pt.nr_pods): 133 print(f' [{pod}]={pt.pod_node[pod].value_()}', end='') 134 print('') 135 136 print(f' cpu_pod ', end='') 137 for cpu in for_each_possible_cpu(prog): 138 print(f' [{cpu}]={pt.cpu_pod[cpu].value_()}', end='') 139 print('') 140 141 for affn in [WQ_AFFN_CPU, WQ_AFFN_SMT, WQ_AFFN_CACHE, WQ_AFFN_NUMA, WQ_AFFN_SYSTEM]: 142 print('') 143 print(f'{wq_affn_names[affn].string_().decode().upper()}{" (default)" if affn == wq_affn_dfl else ""}') 144 print_pod_type(wq_pod_types[affn]) 145 146 print('') 147 print('Worker Pools') 148 print('============') 149 150 max_pool_id_len = 0 151 max_ref_len = 0 152 for pi, pool in idr_for_each(worker_pool_idr): 153 pool = drgn.Object(prog, 'struct worker_pool', address=pool) 154 max_pool_id_len = max(max_pool_id_len, len(f'{pi}')) 155 max_ref_len = max(max_ref_len, len(f'{pool.refcnt.value_()}')) 156 157 for pi, pool in idr_for_each(worker_pool_idr): 158 pool = drgn.Object(prog, 'struct worker_pool', address=pool) 159 print(f'pool[{pi:0{max_pool_id_len}}] flags=0x{pool.flags.value_():02x} ref={pool.refcnt.value_():{max_ref_len}} nice={pool.attrs.nice.value_():3} ', end='') 160 print(f'idle/workers={pool.nr_idle.value_():3}/{pool.nr_workers.value_():3} ', end='') 161 if pool.cpu >= 0: 162 print(f'cpu={pool.cpu.value_():3}', end='') 163 if pool.flags & POOL_BH: 164 print(' bh', end='') 165 else: 166 print(f'cpus={cpumask_str(pool.attrs.cpumask)}', end='') 167 print(f' pod_cpus={cpumask_str(pool.attrs.__pod_cpumask)}', end='') 168 if pool.attrs.affn_strict: 169 print(' strict', end='') 170 print('') 171 172 print('') 173 print('Workqueue CPU -> pool') 174 print('=====================') 175 176 print(f'[{"workqueue":^{WQ_NAME_LEN-2}}\\ {"type CPU":{wq_type_len}}', end='') 177 for cpu in for_each_possible_cpu(prog): 178 print(f' {cpu:{max_pool_id_len}}', end='') 179 print(' dfl]') 180 181 for wq in list_for_each_entry('struct workqueue_struct', workqueues.address_of_(), 'list'): 182 print(f'{wq.name.string_().decode():{WQ_NAME_LEN}} {wq_type_str(wq):10}', end='') 183 184 for cpu in for_each_possible_cpu(prog): 185 pool_id = per_cpu_ptr(wq.cpu_pwq, cpu)[0].pool.id.value_() 186 field_len = max(len(str(cpu)), max_pool_id_len) 187 print(f' {pool_id:{field_len}}', end='') 188 189 if wq.flags & WQ_UNBOUND: 190 print(f' {wq.dfl_pwq.pool.id.value_():{max_pool_id_len}}', end='') 191 print('') 192 193 print('') 194 print('Workqueue -> rescuer') 195 print('====================') 196 197 ucpus_len = max(cpumask_str_len, len("unbound_cpus")) 198 rcpus_len = max(cpumask_str_len, len("rescuer_cpus")) 199 200 print(f'[{"workqueue":^{WQ_NAME_LEN-2}}\\ {"unbound_cpus":{ucpus_len}} pid {"rescuer_cpus":{rcpus_len}} ]') 201 202 for wq in list_for_each_entry('struct workqueue_struct', workqueues.address_of_(), 'list'): 203 if not (wq.flags & WQ_MEM_RECLAIM): 204 continue 205 206 print(f'{wq.name.string_().decode():{WQ_NAME_LEN}}', end='') 207 if wq.unbound_attrs.value_() != 0: 208 print(f' {cpumask_str(wq.unbound_attrs.cpumask):{ucpus_len}}', end='') 209 else: 210 print(f' {"":{ucpus_len}}', end='') 211 212 print(f' {wq.rescuer.task.pid.value_():6}', end='') 213 print(f' {cpumask_str(wq.rescuer.task.cpus_ptr):{rcpus_len}}', end='') 214 print('') 215 216 print('') 217 print('Unbound workqueue -> node_nr/max_active') 218 print('=======================================') 219 220 if 'node_to_cpumask_map' in prog: 221 __cpu_online_mask = prog['__cpu_online_mask'] 222 node_to_cpumask_map = prog['node_to_cpumask_map'] 223 nr_node_ids = prog['nr_node_ids'].value_() 224 225 print(f'online_cpus={cpumask_str(__cpu_online_mask.address_of_())}') 226 for node in for_each_node(): 227 print(f'NODE[{node:02}]={cpumask_str(node_to_cpumask_map[node])}') 228 print('') 229 230 print(f'[{"workqueue":^{WQ_NAME_LEN-2}}\\ min max', end='') 231 first = True 232 for node in for_each_node(): 233 if first: 234 print(f' NODE {node}', end='') 235 first = False 236 else: 237 print(f' {node:7}', end='') 238 print(f' {"dfl":>7} ]') 239 print('') 240 241 for wq in list_for_each_entry('struct workqueue_struct', workqueues.address_of_(), 'list'): 242 if not (wq.flags & WQ_UNBOUND): 243 continue 244 245 print(f'{wq.name.string_().decode():{WQ_NAME_LEN}} ', end='') 246 print(f'{wq.min_active.value_():3} {wq.max_active.value_():3}', end='') 247 for node in for_each_node(): 248 nna = wq.node_nr_active[node] 249 print(f' {nna.nr.counter.value_():3}/{nna.max.value_():3}', end='') 250 nna = wq.node_nr_active[nr_node_ids] 251 print(f' {nna.nr.counter.value_():3}/{nna.max.value_():3}') 252 else: 253 printf(f'node_to_cpumask_map not present, is NUMA enabled?')
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.