~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/virt/kvm/kvm_main.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Kernel-based Virtual Machine (KVM) Hypervisor
  4  *
  5  * Copyright (C) 2006 Qumranet, Inc.
  6  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  7  *
  8  * Authors:
  9  *   Avi Kivity   <avi@qumranet.com>
 10  *   Yaniv Kamay  <yaniv@qumranet.com>
 11  */
 12 
 13 #include <kvm/iodev.h>
 14 
 15 #include <linux/kvm_host.h>
 16 #include <linux/kvm.h>
 17 #include <linux/module.h>
 18 #include <linux/errno.h>
 19 #include <linux/percpu.h>
 20 #include <linux/mm.h>
 21 #include <linux/miscdevice.h>
 22 #include <linux/vmalloc.h>
 23 #include <linux/reboot.h>
 24 #include <linux/debugfs.h>
 25 #include <linux/highmem.h>
 26 #include <linux/file.h>
 27 #include <linux/syscore_ops.h>
 28 #include <linux/cpu.h>
 29 #include <linux/sched/signal.h>
 30 #include <linux/sched/mm.h>
 31 #include <linux/sched/stat.h>
 32 #include <linux/cpumask.h>
 33 #include <linux/smp.h>
 34 #include <linux/anon_inodes.h>
 35 #include <linux/profile.h>
 36 #include <linux/kvm_para.h>
 37 #include <linux/pagemap.h>
 38 #include <linux/mman.h>
 39 #include <linux/swap.h>
 40 #include <linux/bitops.h>
 41 #include <linux/spinlock.h>
 42 #include <linux/compat.h>
 43 #include <linux/srcu.h>
 44 #include <linux/hugetlb.h>
 45 #include <linux/slab.h>
 46 #include <linux/sort.h>
 47 #include <linux/bsearch.h>
 48 #include <linux/io.h>
 49 #include <linux/lockdep.h>
 50 #include <linux/kthread.h>
 51 #include <linux/suspend.h>
 52 
 53 #include <asm/processor.h>
 54 #include <asm/ioctl.h>
 55 #include <linux/uaccess.h>
 56 
 57 #include "coalesced_mmio.h"
 58 #include "async_pf.h"
 59 #include "kvm_mm.h"
 60 #include "vfio.h"
 61 
 62 #include <trace/events/ipi.h>
 63 
 64 #define CREATE_TRACE_POINTS
 65 #include <trace/events/kvm.h>
 66 
 67 #include <linux/kvm_dirty_ring.h>
 68 
 69 
 70 /* Worst case buffer size needed for holding an integer. */
 71 #define ITOA_MAX_LEN 12
 72 
 73 MODULE_AUTHOR("Qumranet");
 74 MODULE_DESCRIPTION("Kernel-based Virtual Machine (KVM) Hypervisor");
 75 MODULE_LICENSE("GPL");
 76 
 77 /* Architectures should define their poll value according to the halt latency */
 78 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
 79 module_param(halt_poll_ns, uint, 0644);
 80 EXPORT_SYMBOL_GPL(halt_poll_ns);
 81 
 82 /* Default doubles per-vcpu halt_poll_ns. */
 83 unsigned int halt_poll_ns_grow = 2;
 84 module_param(halt_poll_ns_grow, uint, 0644);
 85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
 86 
 87 /* The start value to grow halt_poll_ns from */
 88 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
 89 module_param(halt_poll_ns_grow_start, uint, 0644);
 90 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
 91 
 92 /* Default halves per-vcpu halt_poll_ns. */
 93 unsigned int halt_poll_ns_shrink = 2;
 94 module_param(halt_poll_ns_shrink, uint, 0644);
 95 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
 96 
 97 /*
 98  * Ordering of locks:
 99  *
100  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
101  */
102 
103 DEFINE_MUTEX(kvm_lock);
104 LIST_HEAD(vm_list);
105 
106 static struct kmem_cache *kvm_vcpu_cache;
107 
108 static __read_mostly struct preempt_ops kvm_preempt_ops;
109 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
110 
111 static struct dentry *kvm_debugfs_dir;
112 
113 static const struct file_operations stat_fops_per_vm;
114 
115 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
116                            unsigned long arg);
117 #ifdef CONFIG_KVM_COMPAT
118 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
119                                   unsigned long arg);
120 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
121 #else
122 /*
123  * For architectures that don't implement a compat infrastructure,
124  * adopt a double line of defense:
125  * - Prevent a compat task from opening /dev/kvm
126  * - If the open has been done by a 64bit task, and the KVM fd
127  *   passed to a compat task, let the ioctls fail.
128  */
129 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
130                                 unsigned long arg) { return -EINVAL; }
131 
132 static int kvm_no_compat_open(struct inode *inode, struct file *file)
133 {
134         return is_compat_task() ? -ENODEV : 0;
135 }
136 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
137                         .open           = kvm_no_compat_open
138 #endif
139 static int hardware_enable_all(void);
140 static void hardware_disable_all(void);
141 
142 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
143 
144 #define KVM_EVENT_CREATE_VM 0
145 #define KVM_EVENT_DESTROY_VM 1
146 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
147 static unsigned long long kvm_createvm_count;
148 static unsigned long long kvm_active_vms;
149 
150 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
151 
152 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
153 {
154 }
155 
156 bool kvm_is_zone_device_page(struct page *page)
157 {
158         /*
159          * The metadata used by is_zone_device_page() to determine whether or
160          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
161          * the device has been pinned, e.g. by get_user_pages().  WARN if the
162          * page_count() is zero to help detect bad usage of this helper.
163          */
164         if (WARN_ON_ONCE(!page_count(page)))
165                 return false;
166 
167         return is_zone_device_page(page);
168 }
169 
170 /*
171  * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
172  * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
173  * is likely incomplete, it has been compiled purely through people wanting to
174  * back guest with a certain type of memory and encountering issues.
175  */
176 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
177 {
178         struct page *page;
179 
180         if (!pfn_valid(pfn))
181                 return NULL;
182 
183         page = pfn_to_page(pfn);
184         if (!PageReserved(page))
185                 return page;
186 
187         /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
188         if (is_zero_pfn(pfn))
189                 return page;
190 
191         /*
192          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
193          * perspective they are "normal" pages, albeit with slightly different
194          * usage rules.
195          */
196         if (kvm_is_zone_device_page(page))
197                 return page;
198 
199         return NULL;
200 }
201 
202 /*
203  * Switches to specified vcpu, until a matching vcpu_put()
204  */
205 void vcpu_load(struct kvm_vcpu *vcpu)
206 {
207         int cpu = get_cpu();
208 
209         __this_cpu_write(kvm_running_vcpu, vcpu);
210         preempt_notifier_register(&vcpu->preempt_notifier);
211         kvm_arch_vcpu_load(vcpu, cpu);
212         put_cpu();
213 }
214 EXPORT_SYMBOL_GPL(vcpu_load);
215 
216 void vcpu_put(struct kvm_vcpu *vcpu)
217 {
218         preempt_disable();
219         kvm_arch_vcpu_put(vcpu);
220         preempt_notifier_unregister(&vcpu->preempt_notifier);
221         __this_cpu_write(kvm_running_vcpu, NULL);
222         preempt_enable();
223 }
224 EXPORT_SYMBOL_GPL(vcpu_put);
225 
226 /* TODO: merge with kvm_arch_vcpu_should_kick */
227 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
228 {
229         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
230 
231         /*
232          * We need to wait for the VCPU to reenable interrupts and get out of
233          * READING_SHADOW_PAGE_TABLES mode.
234          */
235         if (req & KVM_REQUEST_WAIT)
236                 return mode != OUTSIDE_GUEST_MODE;
237 
238         /*
239          * Need to kick a running VCPU, but otherwise there is nothing to do.
240          */
241         return mode == IN_GUEST_MODE;
242 }
243 
244 static void ack_kick(void *_completed)
245 {
246 }
247 
248 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
249 {
250         if (cpumask_empty(cpus))
251                 return false;
252 
253         smp_call_function_many(cpus, ack_kick, NULL, wait);
254         return true;
255 }
256 
257 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
258                                   struct cpumask *tmp, int current_cpu)
259 {
260         int cpu;
261 
262         if (likely(!(req & KVM_REQUEST_NO_ACTION)))
263                 __kvm_make_request(req, vcpu);
264 
265         if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
266                 return;
267 
268         /*
269          * Note, the vCPU could get migrated to a different pCPU at any point
270          * after kvm_request_needs_ipi(), which could result in sending an IPI
271          * to the previous pCPU.  But, that's OK because the purpose of the IPI
272          * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
273          * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
274          * after this point is also OK, as the requirement is only that KVM wait
275          * for vCPUs that were reading SPTEs _before_ any changes were
276          * finalized. See kvm_vcpu_kick() for more details on handling requests.
277          */
278         if (kvm_request_needs_ipi(vcpu, req)) {
279                 cpu = READ_ONCE(vcpu->cpu);
280                 if (cpu != -1 && cpu != current_cpu)
281                         __cpumask_set_cpu(cpu, tmp);
282         }
283 }
284 
285 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
286                                  unsigned long *vcpu_bitmap)
287 {
288         struct kvm_vcpu *vcpu;
289         struct cpumask *cpus;
290         int i, me;
291         bool called;
292 
293         me = get_cpu();
294 
295         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
296         cpumask_clear(cpus);
297 
298         for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
299                 vcpu = kvm_get_vcpu(kvm, i);
300                 if (!vcpu)
301                         continue;
302                 kvm_make_vcpu_request(vcpu, req, cpus, me);
303         }
304 
305         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
306         put_cpu();
307 
308         return called;
309 }
310 
311 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
312 {
313         struct kvm_vcpu *vcpu;
314         struct cpumask *cpus;
315         unsigned long i;
316         bool called;
317         int me;
318 
319         me = get_cpu();
320 
321         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
322         cpumask_clear(cpus);
323 
324         kvm_for_each_vcpu(i, vcpu, kvm)
325                 kvm_make_vcpu_request(vcpu, req, cpus, me);
326 
327         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
328         put_cpu();
329 
330         return called;
331 }
332 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
333 
334 void kvm_flush_remote_tlbs(struct kvm *kvm)
335 {
336         ++kvm->stat.generic.remote_tlb_flush_requests;
337 
338         /*
339          * We want to publish modifications to the page tables before reading
340          * mode. Pairs with a memory barrier in arch-specific code.
341          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
342          * and smp_mb in walk_shadow_page_lockless_begin/end.
343          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
344          *
345          * There is already an smp_mb__after_atomic() before
346          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
347          * barrier here.
348          */
349         if (!kvm_arch_flush_remote_tlbs(kvm)
350             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
351                 ++kvm->stat.generic.remote_tlb_flush;
352 }
353 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
354 
355 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
356 {
357         if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
358                 return;
359 
360         /*
361          * Fall back to a flushing entire TLBs if the architecture range-based
362          * TLB invalidation is unsupported or can't be performed for whatever
363          * reason.
364          */
365         kvm_flush_remote_tlbs(kvm);
366 }
367 
368 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
369                                    const struct kvm_memory_slot *memslot)
370 {
371         /*
372          * All current use cases for flushing the TLBs for a specific memslot
373          * are related to dirty logging, and many do the TLB flush out of
374          * mmu_lock. The interaction between the various operations on memslot
375          * must be serialized by slots_locks to ensure the TLB flush from one
376          * operation is observed by any other operation on the same memslot.
377          */
378         lockdep_assert_held(&kvm->slots_lock);
379         kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
380 }
381 
382 static void kvm_flush_shadow_all(struct kvm *kvm)
383 {
384         kvm_arch_flush_shadow_all(kvm);
385         kvm_arch_guest_memory_reclaimed(kvm);
386 }
387 
388 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
389 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
390                                                gfp_t gfp_flags)
391 {
392         void *page;
393 
394         gfp_flags |= mc->gfp_zero;
395 
396         if (mc->kmem_cache)
397                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
398 
399         page = (void *)__get_free_page(gfp_flags);
400         if (page && mc->init_value)
401                 memset64(page, mc->init_value, PAGE_SIZE / sizeof(u64));
402         return page;
403 }
404 
405 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
406 {
407         gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
408         void *obj;
409 
410         if (mc->nobjs >= min)
411                 return 0;
412 
413         if (unlikely(!mc->objects)) {
414                 if (WARN_ON_ONCE(!capacity))
415                         return -EIO;
416 
417                 /*
418                  * Custom init values can be used only for page allocations,
419                  * and obviously conflict with __GFP_ZERO.
420                  */
421                 if (WARN_ON_ONCE(mc->init_value && (mc->kmem_cache || mc->gfp_zero)))
422                         return -EIO;
423 
424                 mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp);
425                 if (!mc->objects)
426                         return -ENOMEM;
427 
428                 mc->capacity = capacity;
429         }
430 
431         /* It is illegal to request a different capacity across topups. */
432         if (WARN_ON_ONCE(mc->capacity != capacity))
433                 return -EIO;
434 
435         while (mc->nobjs < mc->capacity) {
436                 obj = mmu_memory_cache_alloc_obj(mc, gfp);
437                 if (!obj)
438                         return mc->nobjs >= min ? 0 : -ENOMEM;
439                 mc->objects[mc->nobjs++] = obj;
440         }
441         return 0;
442 }
443 
444 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
445 {
446         return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
447 }
448 
449 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
450 {
451         return mc->nobjs;
452 }
453 
454 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
455 {
456         while (mc->nobjs) {
457                 if (mc->kmem_cache)
458                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
459                 else
460                         free_page((unsigned long)mc->objects[--mc->nobjs]);
461         }
462 
463         kvfree(mc->objects);
464 
465         mc->objects = NULL;
466         mc->capacity = 0;
467 }
468 
469 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
470 {
471         void *p;
472 
473         if (WARN_ON(!mc->nobjs))
474                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
475         else
476                 p = mc->objects[--mc->nobjs];
477         BUG_ON(!p);
478         return p;
479 }
480 #endif
481 
482 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
483 {
484         mutex_init(&vcpu->mutex);
485         vcpu->cpu = -1;
486         vcpu->kvm = kvm;
487         vcpu->vcpu_id = id;
488         vcpu->pid = NULL;
489 #ifndef __KVM_HAVE_ARCH_WQP
490         rcuwait_init(&vcpu->wait);
491 #endif
492         kvm_async_pf_vcpu_init(vcpu);
493 
494         kvm_vcpu_set_in_spin_loop(vcpu, false);
495         kvm_vcpu_set_dy_eligible(vcpu, false);
496         vcpu->preempted = false;
497         vcpu->ready = false;
498         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
499         vcpu->last_used_slot = NULL;
500 
501         /* Fill the stats id string for the vcpu */
502         snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
503                  task_pid_nr(current), id);
504 }
505 
506 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
507 {
508         kvm_arch_vcpu_destroy(vcpu);
509         kvm_dirty_ring_free(&vcpu->dirty_ring);
510 
511         /*
512          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
513          * the vcpu->pid pointer, and at destruction time all file descriptors
514          * are already gone.
515          */
516         put_pid(rcu_dereference_protected(vcpu->pid, 1));
517 
518         free_page((unsigned long)vcpu->run);
519         kmem_cache_free(kvm_vcpu_cache, vcpu);
520 }
521 
522 void kvm_destroy_vcpus(struct kvm *kvm)
523 {
524         unsigned long i;
525         struct kvm_vcpu *vcpu;
526 
527         kvm_for_each_vcpu(i, vcpu, kvm) {
528                 kvm_vcpu_destroy(vcpu);
529                 xa_erase(&kvm->vcpu_array, i);
530         }
531 
532         atomic_set(&kvm->online_vcpus, 0);
533 }
534 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
535 
536 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
537 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
538 {
539         return container_of(mn, struct kvm, mmu_notifier);
540 }
541 
542 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
543 
544 typedef void (*on_lock_fn_t)(struct kvm *kvm);
545 
546 struct kvm_mmu_notifier_range {
547         /*
548          * 64-bit addresses, as KVM notifiers can operate on host virtual
549          * addresses (unsigned long) and guest physical addresses (64-bit).
550          */
551         u64 start;
552         u64 end;
553         union kvm_mmu_notifier_arg arg;
554         gfn_handler_t handler;
555         on_lock_fn_t on_lock;
556         bool flush_on_ret;
557         bool may_block;
558 };
559 
560 /*
561  * The inner-most helper returns a tuple containing the return value from the
562  * arch- and action-specific handler, plus a flag indicating whether or not at
563  * least one memslot was found, i.e. if the handler found guest memory.
564  *
565  * Note, most notifiers are averse to booleans, so even though KVM tracks the
566  * return from arch code as a bool, outer helpers will cast it to an int. :-(
567  */
568 typedef struct kvm_mmu_notifier_return {
569         bool ret;
570         bool found_memslot;
571 } kvm_mn_ret_t;
572 
573 /*
574  * Use a dedicated stub instead of NULL to indicate that there is no callback
575  * function/handler.  The compiler technically can't guarantee that a real
576  * function will have a non-zero address, and so it will generate code to
577  * check for !NULL, whereas comparing against a stub will be elided at compile
578  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
579  */
580 static void kvm_null_fn(void)
581 {
582 
583 }
584 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
585 
586 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
587 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)          \
588         for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
589              node;                                                           \
590              node = interval_tree_iter_next(node, start, last))      \
591 
592 static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm,
593                                                            const struct kvm_mmu_notifier_range *range)
594 {
595         struct kvm_mmu_notifier_return r = {
596                 .ret = false,
597                 .found_memslot = false,
598         };
599         struct kvm_gfn_range gfn_range;
600         struct kvm_memory_slot *slot;
601         struct kvm_memslots *slots;
602         int i, idx;
603 
604         if (WARN_ON_ONCE(range->end <= range->start))
605                 return r;
606 
607         /* A null handler is allowed if and only if on_lock() is provided. */
608         if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
609                          IS_KVM_NULL_FN(range->handler)))
610                 return r;
611 
612         idx = srcu_read_lock(&kvm->srcu);
613 
614         for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
615                 struct interval_tree_node *node;
616 
617                 slots = __kvm_memslots(kvm, i);
618                 kvm_for_each_memslot_in_hva_range(node, slots,
619                                                   range->start, range->end - 1) {
620                         unsigned long hva_start, hva_end;
621 
622                         slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
623                         hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
624                         hva_end = min_t(unsigned long, range->end,
625                                         slot->userspace_addr + (slot->npages << PAGE_SHIFT));
626 
627                         /*
628                          * To optimize for the likely case where the address
629                          * range is covered by zero or one memslots, don't
630                          * bother making these conditional (to avoid writes on
631                          * the second or later invocation of the handler).
632                          */
633                         gfn_range.arg = range->arg;
634                         gfn_range.may_block = range->may_block;
635 
636                         /*
637                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
638                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
639                          */
640                         gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
641                         gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
642                         gfn_range.slot = slot;
643 
644                         if (!r.found_memslot) {
645                                 r.found_memslot = true;
646                                 KVM_MMU_LOCK(kvm);
647                                 if (!IS_KVM_NULL_FN(range->on_lock))
648                                         range->on_lock(kvm);
649 
650                                 if (IS_KVM_NULL_FN(range->handler))
651                                         goto mmu_unlock;
652                         }
653                         r.ret |= range->handler(kvm, &gfn_range);
654                 }
655         }
656 
657         if (range->flush_on_ret && r.ret)
658                 kvm_flush_remote_tlbs(kvm);
659 
660 mmu_unlock:
661         if (r.found_memslot)
662                 KVM_MMU_UNLOCK(kvm);
663 
664         srcu_read_unlock(&kvm->srcu, idx);
665 
666         return r;
667 }
668 
669 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
670                                                 unsigned long start,
671                                                 unsigned long end,
672                                                 gfn_handler_t handler)
673 {
674         struct kvm *kvm = mmu_notifier_to_kvm(mn);
675         const struct kvm_mmu_notifier_range range = {
676                 .start          = start,
677                 .end            = end,
678                 .handler        = handler,
679                 .on_lock        = (void *)kvm_null_fn,
680                 .flush_on_ret   = true,
681                 .may_block      = false,
682         };
683 
684         return __kvm_handle_hva_range(kvm, &range).ret;
685 }
686 
687 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
688                                                          unsigned long start,
689                                                          unsigned long end,
690                                                          gfn_handler_t handler)
691 {
692         struct kvm *kvm = mmu_notifier_to_kvm(mn);
693         const struct kvm_mmu_notifier_range range = {
694                 .start          = start,
695                 .end            = end,
696                 .handler        = handler,
697                 .on_lock        = (void *)kvm_null_fn,
698                 .flush_on_ret   = false,
699                 .may_block      = false,
700         };
701 
702         return __kvm_handle_hva_range(kvm, &range).ret;
703 }
704 
705 void kvm_mmu_invalidate_begin(struct kvm *kvm)
706 {
707         lockdep_assert_held_write(&kvm->mmu_lock);
708         /*
709          * The count increase must become visible at unlock time as no
710          * spte can be established without taking the mmu_lock and
711          * count is also read inside the mmu_lock critical section.
712          */
713         kvm->mmu_invalidate_in_progress++;
714 
715         if (likely(kvm->mmu_invalidate_in_progress == 1)) {
716                 kvm->mmu_invalidate_range_start = INVALID_GPA;
717                 kvm->mmu_invalidate_range_end = INVALID_GPA;
718         }
719 }
720 
721 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
722 {
723         lockdep_assert_held_write(&kvm->mmu_lock);
724 
725         WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
726 
727         if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
728                 kvm->mmu_invalidate_range_start = start;
729                 kvm->mmu_invalidate_range_end = end;
730         } else {
731                 /*
732                  * Fully tracking multiple concurrent ranges has diminishing
733                  * returns. Keep things simple and just find the minimal range
734                  * which includes the current and new ranges. As there won't be
735                  * enough information to subtract a range after its invalidate
736                  * completes, any ranges invalidated concurrently will
737                  * accumulate and persist until all outstanding invalidates
738                  * complete.
739                  */
740                 kvm->mmu_invalidate_range_start =
741                         min(kvm->mmu_invalidate_range_start, start);
742                 kvm->mmu_invalidate_range_end =
743                         max(kvm->mmu_invalidate_range_end, end);
744         }
745 }
746 
747 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
748 {
749         kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
750         return kvm_unmap_gfn_range(kvm, range);
751 }
752 
753 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
754                                         const struct mmu_notifier_range *range)
755 {
756         struct kvm *kvm = mmu_notifier_to_kvm(mn);
757         const struct kvm_mmu_notifier_range hva_range = {
758                 .start          = range->start,
759                 .end            = range->end,
760                 .handler        = kvm_mmu_unmap_gfn_range,
761                 .on_lock        = kvm_mmu_invalidate_begin,
762                 .flush_on_ret   = true,
763                 .may_block      = mmu_notifier_range_blockable(range),
764         };
765 
766         trace_kvm_unmap_hva_range(range->start, range->end);
767 
768         /*
769          * Prevent memslot modification between range_start() and range_end()
770          * so that conditionally locking provides the same result in both
771          * functions.  Without that guarantee, the mmu_invalidate_in_progress
772          * adjustments will be imbalanced.
773          *
774          * Pairs with the decrement in range_end().
775          */
776         spin_lock(&kvm->mn_invalidate_lock);
777         kvm->mn_active_invalidate_count++;
778         spin_unlock(&kvm->mn_invalidate_lock);
779 
780         /*
781          * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
782          * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
783          * each cache's lock.  There are relatively few caches in existence at
784          * any given time, and the caches themselves can check for hva overlap,
785          * i.e. don't need to rely on memslot overlap checks for performance.
786          * Because this runs without holding mmu_lock, the pfn caches must use
787          * mn_active_invalidate_count (see above) instead of
788          * mmu_invalidate_in_progress.
789          */
790         gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end);
791 
792         /*
793          * If one or more memslots were found and thus zapped, notify arch code
794          * that guest memory has been reclaimed.  This needs to be done *after*
795          * dropping mmu_lock, as x86's reclaim path is slooooow.
796          */
797         if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot)
798                 kvm_arch_guest_memory_reclaimed(kvm);
799 
800         return 0;
801 }
802 
803 void kvm_mmu_invalidate_end(struct kvm *kvm)
804 {
805         lockdep_assert_held_write(&kvm->mmu_lock);
806 
807         /*
808          * This sequence increase will notify the kvm page fault that
809          * the page that is going to be mapped in the spte could have
810          * been freed.
811          */
812         kvm->mmu_invalidate_seq++;
813         smp_wmb();
814         /*
815          * The above sequence increase must be visible before the
816          * below count decrease, which is ensured by the smp_wmb above
817          * in conjunction with the smp_rmb in mmu_invalidate_retry().
818          */
819         kvm->mmu_invalidate_in_progress--;
820         KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
821 
822         /*
823          * Assert that at least one range was added between start() and end().
824          * Not adding a range isn't fatal, but it is a KVM bug.
825          */
826         WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
827 }
828 
829 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
830                                         const struct mmu_notifier_range *range)
831 {
832         struct kvm *kvm = mmu_notifier_to_kvm(mn);
833         const struct kvm_mmu_notifier_range hva_range = {
834                 .start          = range->start,
835                 .end            = range->end,
836                 .handler        = (void *)kvm_null_fn,
837                 .on_lock        = kvm_mmu_invalidate_end,
838                 .flush_on_ret   = false,
839                 .may_block      = mmu_notifier_range_blockable(range),
840         };
841         bool wake;
842 
843         __kvm_handle_hva_range(kvm, &hva_range);
844 
845         /* Pairs with the increment in range_start(). */
846         spin_lock(&kvm->mn_invalidate_lock);
847         if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count))
848                 --kvm->mn_active_invalidate_count;
849         wake = !kvm->mn_active_invalidate_count;
850         spin_unlock(&kvm->mn_invalidate_lock);
851 
852         /*
853          * There can only be one waiter, since the wait happens under
854          * slots_lock.
855          */
856         if (wake)
857                 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
858 }
859 
860 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
861                                               struct mm_struct *mm,
862                                               unsigned long start,
863                                               unsigned long end)
864 {
865         trace_kvm_age_hva(start, end);
866 
867         return kvm_handle_hva_range(mn, start, end, kvm_age_gfn);
868 }
869 
870 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
871                                         struct mm_struct *mm,
872                                         unsigned long start,
873                                         unsigned long end)
874 {
875         trace_kvm_age_hva(start, end);
876 
877         /*
878          * Even though we do not flush TLB, this will still adversely
879          * affect performance on pre-Haswell Intel EPT, where there is
880          * no EPT Access Bit to clear so that we have to tear down EPT
881          * tables instead. If we find this unacceptable, we can always
882          * add a parameter to kvm_age_hva so that it effectively doesn't
883          * do anything on clear_young.
884          *
885          * Also note that currently we never issue secondary TLB flushes
886          * from clear_young, leaving this job up to the regular system
887          * cadence. If we find this inaccurate, we might come up with a
888          * more sophisticated heuristic later.
889          */
890         return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
891 }
892 
893 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
894                                        struct mm_struct *mm,
895                                        unsigned long address)
896 {
897         trace_kvm_test_age_hva(address);
898 
899         return kvm_handle_hva_range_no_flush(mn, address, address + 1,
900                                              kvm_test_age_gfn);
901 }
902 
903 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
904                                      struct mm_struct *mm)
905 {
906         struct kvm *kvm = mmu_notifier_to_kvm(mn);
907         int idx;
908 
909         idx = srcu_read_lock(&kvm->srcu);
910         kvm_flush_shadow_all(kvm);
911         srcu_read_unlock(&kvm->srcu, idx);
912 }
913 
914 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
915         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
916         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
917         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
918         .clear_young            = kvm_mmu_notifier_clear_young,
919         .test_young             = kvm_mmu_notifier_test_young,
920         .release                = kvm_mmu_notifier_release,
921 };
922 
923 static int kvm_init_mmu_notifier(struct kvm *kvm)
924 {
925         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
926         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
927 }
928 
929 #else  /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
930 
931 static int kvm_init_mmu_notifier(struct kvm *kvm)
932 {
933         return 0;
934 }
935 
936 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
937 
938 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
939 static int kvm_pm_notifier_call(struct notifier_block *bl,
940                                 unsigned long state,
941                                 void *unused)
942 {
943         struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
944 
945         return kvm_arch_pm_notifier(kvm, state);
946 }
947 
948 static void kvm_init_pm_notifier(struct kvm *kvm)
949 {
950         kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
951         /* Suspend KVM before we suspend ftrace, RCU, etc. */
952         kvm->pm_notifier.priority = INT_MAX;
953         register_pm_notifier(&kvm->pm_notifier);
954 }
955 
956 static void kvm_destroy_pm_notifier(struct kvm *kvm)
957 {
958         unregister_pm_notifier(&kvm->pm_notifier);
959 }
960 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
961 static void kvm_init_pm_notifier(struct kvm *kvm)
962 {
963 }
964 
965 static void kvm_destroy_pm_notifier(struct kvm *kvm)
966 {
967 }
968 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
969 
970 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
971 {
972         if (!memslot->dirty_bitmap)
973                 return;
974 
975         vfree(memslot->dirty_bitmap);
976         memslot->dirty_bitmap = NULL;
977 }
978 
979 /* This does not remove the slot from struct kvm_memslots data structures */
980 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
981 {
982         if (slot->flags & KVM_MEM_GUEST_MEMFD)
983                 kvm_gmem_unbind(slot);
984 
985         kvm_destroy_dirty_bitmap(slot);
986 
987         kvm_arch_free_memslot(kvm, slot);
988 
989         kfree(slot);
990 }
991 
992 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
993 {
994         struct hlist_node *idnode;
995         struct kvm_memory_slot *memslot;
996         int bkt;
997 
998         /*
999          * The same memslot objects live in both active and inactive sets,
1000          * arbitrarily free using index '1' so the second invocation of this
1001          * function isn't operating over a structure with dangling pointers
1002          * (even though this function isn't actually touching them).
1003          */
1004         if (!slots->node_idx)
1005                 return;
1006 
1007         hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
1008                 kvm_free_memslot(kvm, memslot);
1009 }
1010 
1011 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
1012 {
1013         switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
1014         case KVM_STATS_TYPE_INSTANT:
1015                 return 0444;
1016         case KVM_STATS_TYPE_CUMULATIVE:
1017         case KVM_STATS_TYPE_PEAK:
1018         default:
1019                 return 0644;
1020         }
1021 }
1022 
1023 
1024 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1025 {
1026         int i;
1027         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1028                                       kvm_vcpu_stats_header.num_desc;
1029 
1030         if (IS_ERR(kvm->debugfs_dentry))
1031                 return;
1032 
1033         debugfs_remove_recursive(kvm->debugfs_dentry);
1034 
1035         if (kvm->debugfs_stat_data) {
1036                 for (i = 0; i < kvm_debugfs_num_entries; i++)
1037                         kfree(kvm->debugfs_stat_data[i]);
1038                 kfree(kvm->debugfs_stat_data);
1039         }
1040 }
1041 
1042 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1043 {
1044         static DEFINE_MUTEX(kvm_debugfs_lock);
1045         struct dentry *dent;
1046         char dir_name[ITOA_MAX_LEN * 2];
1047         struct kvm_stat_data *stat_data;
1048         const struct _kvm_stats_desc *pdesc;
1049         int i, ret = -ENOMEM;
1050         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1051                                       kvm_vcpu_stats_header.num_desc;
1052 
1053         if (!debugfs_initialized())
1054                 return 0;
1055 
1056         snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1057         mutex_lock(&kvm_debugfs_lock);
1058         dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1059         if (dent) {
1060                 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1061                 dput(dent);
1062                 mutex_unlock(&kvm_debugfs_lock);
1063                 return 0;
1064         }
1065         dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1066         mutex_unlock(&kvm_debugfs_lock);
1067         if (IS_ERR(dent))
1068                 return 0;
1069 
1070         kvm->debugfs_dentry = dent;
1071         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1072                                          sizeof(*kvm->debugfs_stat_data),
1073                                          GFP_KERNEL_ACCOUNT);
1074         if (!kvm->debugfs_stat_data)
1075                 goto out_err;
1076 
1077         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1078                 pdesc = &kvm_vm_stats_desc[i];
1079                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1080                 if (!stat_data)
1081                         goto out_err;
1082 
1083                 stat_data->kvm = kvm;
1084                 stat_data->desc = pdesc;
1085                 stat_data->kind = KVM_STAT_VM;
1086                 kvm->debugfs_stat_data[i] = stat_data;
1087                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1088                                     kvm->debugfs_dentry, stat_data,
1089                                     &stat_fops_per_vm);
1090         }
1091 
1092         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1093                 pdesc = &kvm_vcpu_stats_desc[i];
1094                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1095                 if (!stat_data)
1096                         goto out_err;
1097 
1098                 stat_data->kvm = kvm;
1099                 stat_data->desc = pdesc;
1100                 stat_data->kind = KVM_STAT_VCPU;
1101                 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1102                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1103                                     kvm->debugfs_dentry, stat_data,
1104                                     &stat_fops_per_vm);
1105         }
1106 
1107         kvm_arch_create_vm_debugfs(kvm);
1108         return 0;
1109 out_err:
1110         kvm_destroy_vm_debugfs(kvm);
1111         return ret;
1112 }
1113 
1114 /*
1115  * Called after the VM is otherwise initialized, but just before adding it to
1116  * the vm_list.
1117  */
1118 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1119 {
1120         return 0;
1121 }
1122 
1123 /*
1124  * Called just after removing the VM from the vm_list, but before doing any
1125  * other destruction.
1126  */
1127 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1128 {
1129 }
1130 
1131 /*
1132  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1133  * be setup already, so we can create arch-specific debugfs entries under it.
1134  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1135  * a per-arch destroy interface is not needed.
1136  */
1137 void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1138 {
1139 }
1140 
1141 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1142 {
1143         struct kvm *kvm = kvm_arch_alloc_vm();
1144         struct kvm_memslots *slots;
1145         int r, i, j;
1146 
1147         if (!kvm)
1148                 return ERR_PTR(-ENOMEM);
1149 
1150         KVM_MMU_LOCK_INIT(kvm);
1151         mmgrab(current->mm);
1152         kvm->mm = current->mm;
1153         kvm_eventfd_init(kvm);
1154         mutex_init(&kvm->lock);
1155         mutex_init(&kvm->irq_lock);
1156         mutex_init(&kvm->slots_lock);
1157         mutex_init(&kvm->slots_arch_lock);
1158         spin_lock_init(&kvm->mn_invalidate_lock);
1159         rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1160         xa_init(&kvm->vcpu_array);
1161 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1162         xa_init(&kvm->mem_attr_array);
1163 #endif
1164 
1165         INIT_LIST_HEAD(&kvm->gpc_list);
1166         spin_lock_init(&kvm->gpc_lock);
1167 
1168         INIT_LIST_HEAD(&kvm->devices);
1169         kvm->max_vcpus = KVM_MAX_VCPUS;
1170 
1171         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1172 
1173         /*
1174          * Force subsequent debugfs file creations to fail if the VM directory
1175          * is not created (by kvm_create_vm_debugfs()).
1176          */
1177         kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1178 
1179         snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1180                  task_pid_nr(current));
1181 
1182         r = -ENOMEM;
1183         if (init_srcu_struct(&kvm->srcu))
1184                 goto out_err_no_srcu;
1185         if (init_srcu_struct(&kvm->irq_srcu))
1186                 goto out_err_no_irq_srcu;
1187 
1188         r = kvm_init_irq_routing(kvm);
1189         if (r)
1190                 goto out_err_no_irq_routing;
1191 
1192         refcount_set(&kvm->users_count, 1);
1193 
1194         for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1195                 for (j = 0; j < 2; j++) {
1196                         slots = &kvm->__memslots[i][j];
1197 
1198                         atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1199                         slots->hva_tree = RB_ROOT_CACHED;
1200                         slots->gfn_tree = RB_ROOT;
1201                         hash_init(slots->id_hash);
1202                         slots->node_idx = j;
1203 
1204                         /* Generations must be different for each address space. */
1205                         slots->generation = i;
1206                 }
1207 
1208                 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1209         }
1210 
1211         r = -ENOMEM;
1212         for (i = 0; i < KVM_NR_BUSES; i++) {
1213                 rcu_assign_pointer(kvm->buses[i],
1214                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1215                 if (!kvm->buses[i])
1216                         goto out_err_no_arch_destroy_vm;
1217         }
1218 
1219         r = kvm_arch_init_vm(kvm, type);
1220         if (r)
1221                 goto out_err_no_arch_destroy_vm;
1222 
1223         r = hardware_enable_all();
1224         if (r)
1225                 goto out_err_no_disable;
1226 
1227 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1228         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1229 #endif
1230 
1231         r = kvm_init_mmu_notifier(kvm);
1232         if (r)
1233                 goto out_err_no_mmu_notifier;
1234 
1235         r = kvm_coalesced_mmio_init(kvm);
1236         if (r < 0)
1237                 goto out_no_coalesced_mmio;
1238 
1239         r = kvm_create_vm_debugfs(kvm, fdname);
1240         if (r)
1241                 goto out_err_no_debugfs;
1242 
1243         r = kvm_arch_post_init_vm(kvm);
1244         if (r)
1245                 goto out_err;
1246 
1247         mutex_lock(&kvm_lock);
1248         list_add(&kvm->vm_list, &vm_list);
1249         mutex_unlock(&kvm_lock);
1250 
1251         preempt_notifier_inc();
1252         kvm_init_pm_notifier(kvm);
1253 
1254         return kvm;
1255 
1256 out_err:
1257         kvm_destroy_vm_debugfs(kvm);
1258 out_err_no_debugfs:
1259         kvm_coalesced_mmio_free(kvm);
1260 out_no_coalesced_mmio:
1261 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1262         if (kvm->mmu_notifier.ops)
1263                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1264 #endif
1265 out_err_no_mmu_notifier:
1266         hardware_disable_all();
1267 out_err_no_disable:
1268         kvm_arch_destroy_vm(kvm);
1269 out_err_no_arch_destroy_vm:
1270         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1271         for (i = 0; i < KVM_NR_BUSES; i++)
1272                 kfree(kvm_get_bus(kvm, i));
1273         kvm_free_irq_routing(kvm);
1274 out_err_no_irq_routing:
1275         cleanup_srcu_struct(&kvm->irq_srcu);
1276 out_err_no_irq_srcu:
1277         cleanup_srcu_struct(&kvm->srcu);
1278 out_err_no_srcu:
1279         kvm_arch_free_vm(kvm);
1280         mmdrop(current->mm);
1281         return ERR_PTR(r);
1282 }
1283 
1284 static void kvm_destroy_devices(struct kvm *kvm)
1285 {
1286         struct kvm_device *dev, *tmp;
1287 
1288         /*
1289          * We do not need to take the kvm->lock here, because nobody else
1290          * has a reference to the struct kvm at this point and therefore
1291          * cannot access the devices list anyhow.
1292          *
1293          * The device list is generally managed as an rculist, but list_del()
1294          * is used intentionally here. If a bug in KVM introduced a reader that
1295          * was not backed by a reference on the kvm struct, the hope is that
1296          * it'd consume the poisoned forward pointer instead of suffering a
1297          * use-after-free, even though this cannot be guaranteed.
1298          */
1299         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1300                 list_del(&dev->vm_node);
1301                 dev->ops->destroy(dev);
1302         }
1303 }
1304 
1305 static void kvm_destroy_vm(struct kvm *kvm)
1306 {
1307         int i;
1308         struct mm_struct *mm = kvm->mm;
1309 
1310         kvm_destroy_pm_notifier(kvm);
1311         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1312         kvm_destroy_vm_debugfs(kvm);
1313         kvm_arch_sync_events(kvm);
1314         mutex_lock(&kvm_lock);
1315         list_del(&kvm->vm_list);
1316         mutex_unlock(&kvm_lock);
1317         kvm_arch_pre_destroy_vm(kvm);
1318 
1319         kvm_free_irq_routing(kvm);
1320         for (i = 0; i < KVM_NR_BUSES; i++) {
1321                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1322 
1323                 if (bus)
1324                         kvm_io_bus_destroy(bus);
1325                 kvm->buses[i] = NULL;
1326         }
1327         kvm_coalesced_mmio_free(kvm);
1328 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1329         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1330         /*
1331          * At this point, pending calls to invalidate_range_start()
1332          * have completed but no more MMU notifiers will run, so
1333          * mn_active_invalidate_count may remain unbalanced.
1334          * No threads can be waiting in kvm_swap_active_memslots() as the
1335          * last reference on KVM has been dropped, but freeing
1336          * memslots would deadlock without this manual intervention.
1337          *
1338          * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1339          * notifier between a start() and end(), then there shouldn't be any
1340          * in-progress invalidations.
1341          */
1342         WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1343         if (kvm->mn_active_invalidate_count)
1344                 kvm->mn_active_invalidate_count = 0;
1345         else
1346                 WARN_ON(kvm->mmu_invalidate_in_progress);
1347 #else
1348         kvm_flush_shadow_all(kvm);
1349 #endif
1350         kvm_arch_destroy_vm(kvm);
1351         kvm_destroy_devices(kvm);
1352         for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1353                 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1354                 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1355         }
1356         cleanup_srcu_struct(&kvm->irq_srcu);
1357         cleanup_srcu_struct(&kvm->srcu);
1358 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1359         xa_destroy(&kvm->mem_attr_array);
1360 #endif
1361         kvm_arch_free_vm(kvm);
1362         preempt_notifier_dec();
1363         hardware_disable_all();
1364         mmdrop(mm);
1365 }
1366 
1367 void kvm_get_kvm(struct kvm *kvm)
1368 {
1369         refcount_inc(&kvm->users_count);
1370 }
1371 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1372 
1373 /*
1374  * Make sure the vm is not during destruction, which is a safe version of
1375  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1376  */
1377 bool kvm_get_kvm_safe(struct kvm *kvm)
1378 {
1379         return refcount_inc_not_zero(&kvm->users_count);
1380 }
1381 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1382 
1383 void kvm_put_kvm(struct kvm *kvm)
1384 {
1385         if (refcount_dec_and_test(&kvm->users_count))
1386                 kvm_destroy_vm(kvm);
1387 }
1388 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1389 
1390 /*
1391  * Used to put a reference that was taken on behalf of an object associated
1392  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1393  * of the new file descriptor fails and the reference cannot be transferred to
1394  * its final owner.  In such cases, the caller is still actively using @kvm and
1395  * will fail miserably if the refcount unexpectedly hits zero.
1396  */
1397 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1398 {
1399         WARN_ON(refcount_dec_and_test(&kvm->users_count));
1400 }
1401 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1402 
1403 static int kvm_vm_release(struct inode *inode, struct file *filp)
1404 {
1405         struct kvm *kvm = filp->private_data;
1406 
1407         kvm_irqfd_release(kvm);
1408 
1409         kvm_put_kvm(kvm);
1410         return 0;
1411 }
1412 
1413 /*
1414  * Allocation size is twice as large as the actual dirty bitmap size.
1415  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1416  */
1417 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1418 {
1419         unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1420 
1421         memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1422         if (!memslot->dirty_bitmap)
1423                 return -ENOMEM;
1424 
1425         return 0;
1426 }
1427 
1428 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1429 {
1430         struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1431         int node_idx_inactive = active->node_idx ^ 1;
1432 
1433         return &kvm->__memslots[as_id][node_idx_inactive];
1434 }
1435 
1436 /*
1437  * Helper to get the address space ID when one of memslot pointers may be NULL.
1438  * This also serves as a sanity that at least one of the pointers is non-NULL,
1439  * and that their address space IDs don't diverge.
1440  */
1441 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1442                                   struct kvm_memory_slot *b)
1443 {
1444         if (WARN_ON_ONCE(!a && !b))
1445                 return 0;
1446 
1447         if (!a)
1448                 return b->as_id;
1449         if (!b)
1450                 return a->as_id;
1451 
1452         WARN_ON_ONCE(a->as_id != b->as_id);
1453         return a->as_id;
1454 }
1455 
1456 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1457                                 struct kvm_memory_slot *slot)
1458 {
1459         struct rb_root *gfn_tree = &slots->gfn_tree;
1460         struct rb_node **node, *parent;
1461         int idx = slots->node_idx;
1462 
1463         parent = NULL;
1464         for (node = &gfn_tree->rb_node; *node; ) {
1465                 struct kvm_memory_slot *tmp;
1466 
1467                 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1468                 parent = *node;
1469                 if (slot->base_gfn < tmp->base_gfn)
1470                         node = &(*node)->rb_left;
1471                 else if (slot->base_gfn > tmp->base_gfn)
1472                         node = &(*node)->rb_right;
1473                 else
1474                         BUG();
1475         }
1476 
1477         rb_link_node(&slot->gfn_node[idx], parent, node);
1478         rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1479 }
1480 
1481 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1482                                struct kvm_memory_slot *slot)
1483 {
1484         rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1485 }
1486 
1487 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1488                                  struct kvm_memory_slot *old,
1489                                  struct kvm_memory_slot *new)
1490 {
1491         int idx = slots->node_idx;
1492 
1493         WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1494 
1495         rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1496                         &slots->gfn_tree);
1497 }
1498 
1499 /*
1500  * Replace @old with @new in the inactive memslots.
1501  *
1502  * With NULL @old this simply adds @new.
1503  * With NULL @new this simply removes @old.
1504  *
1505  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1506  * appropriately.
1507  */
1508 static void kvm_replace_memslot(struct kvm *kvm,
1509                                 struct kvm_memory_slot *old,
1510                                 struct kvm_memory_slot *new)
1511 {
1512         int as_id = kvm_memslots_get_as_id(old, new);
1513         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1514         int idx = slots->node_idx;
1515 
1516         if (old) {
1517                 hash_del(&old->id_node[idx]);
1518                 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1519 
1520                 if ((long)old == atomic_long_read(&slots->last_used_slot))
1521                         atomic_long_set(&slots->last_used_slot, (long)new);
1522 
1523                 if (!new) {
1524                         kvm_erase_gfn_node(slots, old);
1525                         return;
1526                 }
1527         }
1528 
1529         /*
1530          * Initialize @new's hva range.  Do this even when replacing an @old
1531          * slot, kvm_copy_memslot() deliberately does not touch node data.
1532          */
1533         new->hva_node[idx].start = new->userspace_addr;
1534         new->hva_node[idx].last = new->userspace_addr +
1535                                   (new->npages << PAGE_SHIFT) - 1;
1536 
1537         /*
1538          * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1539          * hva_node needs to be swapped with remove+insert even though hva can't
1540          * change when replacing an existing slot.
1541          */
1542         hash_add(slots->id_hash, &new->id_node[idx], new->id);
1543         interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1544 
1545         /*
1546          * If the memslot gfn is unchanged, rb_replace_node() can be used to
1547          * switch the node in the gfn tree instead of removing the old and
1548          * inserting the new as two separate operations. Replacement is a
1549          * single O(1) operation versus two O(log(n)) operations for
1550          * remove+insert.
1551          */
1552         if (old && old->base_gfn == new->base_gfn) {
1553                 kvm_replace_gfn_node(slots, old, new);
1554         } else {
1555                 if (old)
1556                         kvm_erase_gfn_node(slots, old);
1557                 kvm_insert_gfn_node(slots, new);
1558         }
1559 }
1560 
1561 /*
1562  * Flags that do not access any of the extra space of struct
1563  * kvm_userspace_memory_region2.  KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1564  * only allows these.
1565  */
1566 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1567         (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1568 
1569 static int check_memory_region_flags(struct kvm *kvm,
1570                                      const struct kvm_userspace_memory_region2 *mem)
1571 {
1572         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1573 
1574         if (kvm_arch_has_private_mem(kvm))
1575                 valid_flags |= KVM_MEM_GUEST_MEMFD;
1576 
1577         /* Dirty logging private memory is not currently supported. */
1578         if (mem->flags & KVM_MEM_GUEST_MEMFD)
1579                 valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1580 
1581 #ifdef CONFIG_HAVE_KVM_READONLY_MEM
1582         /*
1583          * GUEST_MEMFD is incompatible with read-only memslots, as writes to
1584          * read-only memslots have emulated MMIO, not page fault, semantics,
1585          * and KVM doesn't allow emulated MMIO for private memory.
1586          */
1587         if (!(mem->flags & KVM_MEM_GUEST_MEMFD))
1588                 valid_flags |= KVM_MEM_READONLY;
1589 #endif
1590 
1591         if (mem->flags & ~valid_flags)
1592                 return -EINVAL;
1593 
1594         return 0;
1595 }
1596 
1597 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1598 {
1599         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1600 
1601         /* Grab the generation from the activate memslots. */
1602         u64 gen = __kvm_memslots(kvm, as_id)->generation;
1603 
1604         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1605         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1606 
1607         /*
1608          * Do not store the new memslots while there are invalidations in
1609          * progress, otherwise the locking in invalidate_range_start and
1610          * invalidate_range_end will be unbalanced.
1611          */
1612         spin_lock(&kvm->mn_invalidate_lock);
1613         prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1614         while (kvm->mn_active_invalidate_count) {
1615                 set_current_state(TASK_UNINTERRUPTIBLE);
1616                 spin_unlock(&kvm->mn_invalidate_lock);
1617                 schedule();
1618                 spin_lock(&kvm->mn_invalidate_lock);
1619         }
1620         finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1621         rcu_assign_pointer(kvm->memslots[as_id], slots);
1622         spin_unlock(&kvm->mn_invalidate_lock);
1623 
1624         /*
1625          * Acquired in kvm_set_memslot. Must be released before synchronize
1626          * SRCU below in order to avoid deadlock with another thread
1627          * acquiring the slots_arch_lock in an srcu critical section.
1628          */
1629         mutex_unlock(&kvm->slots_arch_lock);
1630 
1631         synchronize_srcu_expedited(&kvm->srcu);
1632 
1633         /*
1634          * Increment the new memslot generation a second time, dropping the
1635          * update in-progress flag and incrementing the generation based on
1636          * the number of address spaces.  This provides a unique and easily
1637          * identifiable generation number while the memslots are in flux.
1638          */
1639         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1640 
1641         /*
1642          * Generations must be unique even across address spaces.  We do not need
1643          * a global counter for that, instead the generation space is evenly split
1644          * across address spaces.  For example, with two address spaces, address
1645          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1646          * use generations 1, 3, 5, ...
1647          */
1648         gen += kvm_arch_nr_memslot_as_ids(kvm);
1649 
1650         kvm_arch_memslots_updated(kvm, gen);
1651 
1652         slots->generation = gen;
1653 }
1654 
1655 static int kvm_prepare_memory_region(struct kvm *kvm,
1656                                      const struct kvm_memory_slot *old,
1657                                      struct kvm_memory_slot *new,
1658                                      enum kvm_mr_change change)
1659 {
1660         int r;
1661 
1662         /*
1663          * If dirty logging is disabled, nullify the bitmap; the old bitmap
1664          * will be freed on "commit".  If logging is enabled in both old and
1665          * new, reuse the existing bitmap.  If logging is enabled only in the
1666          * new and KVM isn't using a ring buffer, allocate and initialize a
1667          * new bitmap.
1668          */
1669         if (change != KVM_MR_DELETE) {
1670                 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1671                         new->dirty_bitmap = NULL;
1672                 else if (old && old->dirty_bitmap)
1673                         new->dirty_bitmap = old->dirty_bitmap;
1674                 else if (kvm_use_dirty_bitmap(kvm)) {
1675                         r = kvm_alloc_dirty_bitmap(new);
1676                         if (r)
1677                                 return r;
1678 
1679                         if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1680                                 bitmap_set(new->dirty_bitmap, 0, new->npages);
1681                 }
1682         }
1683 
1684         r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1685 
1686         /* Free the bitmap on failure if it was allocated above. */
1687         if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1688                 kvm_destroy_dirty_bitmap(new);
1689 
1690         return r;
1691 }
1692 
1693 static void kvm_commit_memory_region(struct kvm *kvm,
1694                                      struct kvm_memory_slot *old,
1695                                      const struct kvm_memory_slot *new,
1696                                      enum kvm_mr_change change)
1697 {
1698         int old_flags = old ? old->flags : 0;
1699         int new_flags = new ? new->flags : 0;
1700         /*
1701          * Update the total number of memslot pages before calling the arch
1702          * hook so that architectures can consume the result directly.
1703          */
1704         if (change == KVM_MR_DELETE)
1705                 kvm->nr_memslot_pages -= old->npages;
1706         else if (change == KVM_MR_CREATE)
1707                 kvm->nr_memslot_pages += new->npages;
1708 
1709         if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1710                 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1711                 atomic_set(&kvm->nr_memslots_dirty_logging,
1712                            atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1713         }
1714 
1715         kvm_arch_commit_memory_region(kvm, old, new, change);
1716 
1717         switch (change) {
1718         case KVM_MR_CREATE:
1719                 /* Nothing more to do. */
1720                 break;
1721         case KVM_MR_DELETE:
1722                 /* Free the old memslot and all its metadata. */
1723                 kvm_free_memslot(kvm, old);
1724                 break;
1725         case KVM_MR_MOVE:
1726         case KVM_MR_FLAGS_ONLY:
1727                 /*
1728                  * Free the dirty bitmap as needed; the below check encompasses
1729                  * both the flags and whether a ring buffer is being used)
1730                  */
1731                 if (old->dirty_bitmap && !new->dirty_bitmap)
1732                         kvm_destroy_dirty_bitmap(old);
1733 
1734                 /*
1735                  * The final quirk.  Free the detached, old slot, but only its
1736                  * memory, not any metadata.  Metadata, including arch specific
1737                  * data, may be reused by @new.
1738                  */
1739                 kfree(old);
1740                 break;
1741         default:
1742                 BUG();
1743         }
1744 }
1745 
1746 /*
1747  * Activate @new, which must be installed in the inactive slots by the caller,
1748  * by swapping the active slots and then propagating @new to @old once @old is
1749  * unreachable and can be safely modified.
1750  *
1751  * With NULL @old this simply adds @new to @active (while swapping the sets).
1752  * With NULL @new this simply removes @old from @active and frees it
1753  * (while also swapping the sets).
1754  */
1755 static void kvm_activate_memslot(struct kvm *kvm,
1756                                  struct kvm_memory_slot *old,
1757                                  struct kvm_memory_slot *new)
1758 {
1759         int as_id = kvm_memslots_get_as_id(old, new);
1760 
1761         kvm_swap_active_memslots(kvm, as_id);
1762 
1763         /* Propagate the new memslot to the now inactive memslots. */
1764         kvm_replace_memslot(kvm, old, new);
1765 }
1766 
1767 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1768                              const struct kvm_memory_slot *src)
1769 {
1770         dest->base_gfn = src->base_gfn;
1771         dest->npages = src->npages;
1772         dest->dirty_bitmap = src->dirty_bitmap;
1773         dest->arch = src->arch;
1774         dest->userspace_addr = src->userspace_addr;
1775         dest->flags = src->flags;
1776         dest->id = src->id;
1777         dest->as_id = src->as_id;
1778 }
1779 
1780 static void kvm_invalidate_memslot(struct kvm *kvm,
1781                                    struct kvm_memory_slot *old,
1782                                    struct kvm_memory_slot *invalid_slot)
1783 {
1784         /*
1785          * Mark the current slot INVALID.  As with all memslot modifications,
1786          * this must be done on an unreachable slot to avoid modifying the
1787          * current slot in the active tree.
1788          */
1789         kvm_copy_memslot(invalid_slot, old);
1790         invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1791         kvm_replace_memslot(kvm, old, invalid_slot);
1792 
1793         /*
1794          * Activate the slot that is now marked INVALID, but don't propagate
1795          * the slot to the now inactive slots. The slot is either going to be
1796          * deleted or recreated as a new slot.
1797          */
1798         kvm_swap_active_memslots(kvm, old->as_id);
1799 
1800         /*
1801          * From this point no new shadow pages pointing to a deleted, or moved,
1802          * memslot will be created.  Validation of sp->gfn happens in:
1803          *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1804          *      - kvm_is_visible_gfn (mmu_check_root)
1805          */
1806         kvm_arch_flush_shadow_memslot(kvm, old);
1807         kvm_arch_guest_memory_reclaimed(kvm);
1808 
1809         /* Was released by kvm_swap_active_memslots(), reacquire. */
1810         mutex_lock(&kvm->slots_arch_lock);
1811 
1812         /*
1813          * Copy the arch-specific field of the newly-installed slot back to the
1814          * old slot as the arch data could have changed between releasing
1815          * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1816          * above.  Writers are required to retrieve memslots *after* acquiring
1817          * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1818          */
1819         old->arch = invalid_slot->arch;
1820 }
1821 
1822 static void kvm_create_memslot(struct kvm *kvm,
1823                                struct kvm_memory_slot *new)
1824 {
1825         /* Add the new memslot to the inactive set and activate. */
1826         kvm_replace_memslot(kvm, NULL, new);
1827         kvm_activate_memslot(kvm, NULL, new);
1828 }
1829 
1830 static void kvm_delete_memslot(struct kvm *kvm,
1831                                struct kvm_memory_slot *old,
1832                                struct kvm_memory_slot *invalid_slot)
1833 {
1834         /*
1835          * Remove the old memslot (in the inactive memslots) by passing NULL as
1836          * the "new" slot, and for the invalid version in the active slots.
1837          */
1838         kvm_replace_memslot(kvm, old, NULL);
1839         kvm_activate_memslot(kvm, invalid_slot, NULL);
1840 }
1841 
1842 static void kvm_move_memslot(struct kvm *kvm,
1843                              struct kvm_memory_slot *old,
1844                              struct kvm_memory_slot *new,
1845                              struct kvm_memory_slot *invalid_slot)
1846 {
1847         /*
1848          * Replace the old memslot in the inactive slots, and then swap slots
1849          * and replace the current INVALID with the new as well.
1850          */
1851         kvm_replace_memslot(kvm, old, new);
1852         kvm_activate_memslot(kvm, invalid_slot, new);
1853 }
1854 
1855 static void kvm_update_flags_memslot(struct kvm *kvm,
1856                                      struct kvm_memory_slot *old,
1857                                      struct kvm_memory_slot *new)
1858 {
1859         /*
1860          * Similar to the MOVE case, but the slot doesn't need to be zapped as
1861          * an intermediate step. Instead, the old memslot is simply replaced
1862          * with a new, updated copy in both memslot sets.
1863          */
1864         kvm_replace_memslot(kvm, old, new);
1865         kvm_activate_memslot(kvm, old, new);
1866 }
1867 
1868 static int kvm_set_memslot(struct kvm *kvm,
1869                            struct kvm_memory_slot *old,
1870                            struct kvm_memory_slot *new,
1871                            enum kvm_mr_change change)
1872 {
1873         struct kvm_memory_slot *invalid_slot;
1874         int r;
1875 
1876         /*
1877          * Released in kvm_swap_active_memslots().
1878          *
1879          * Must be held from before the current memslots are copied until after
1880          * the new memslots are installed with rcu_assign_pointer, then
1881          * released before the synchronize srcu in kvm_swap_active_memslots().
1882          *
1883          * When modifying memslots outside of the slots_lock, must be held
1884          * before reading the pointer to the current memslots until after all
1885          * changes to those memslots are complete.
1886          *
1887          * These rules ensure that installing new memslots does not lose
1888          * changes made to the previous memslots.
1889          */
1890         mutex_lock(&kvm->slots_arch_lock);
1891 
1892         /*
1893          * Invalidate the old slot if it's being deleted or moved.  This is
1894          * done prior to actually deleting/moving the memslot to allow vCPUs to
1895          * continue running by ensuring there are no mappings or shadow pages
1896          * for the memslot when it is deleted/moved.  Without pre-invalidation
1897          * (and without a lock), a window would exist between effecting the
1898          * delete/move and committing the changes in arch code where KVM or a
1899          * guest could access a non-existent memslot.
1900          *
1901          * Modifications are done on a temporary, unreachable slot.  The old
1902          * slot needs to be preserved in case a later step fails and the
1903          * invalidation needs to be reverted.
1904          */
1905         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1906                 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1907                 if (!invalid_slot) {
1908                         mutex_unlock(&kvm->slots_arch_lock);
1909                         return -ENOMEM;
1910                 }
1911                 kvm_invalidate_memslot(kvm, old, invalid_slot);
1912         }
1913 
1914         r = kvm_prepare_memory_region(kvm, old, new, change);
1915         if (r) {
1916                 /*
1917                  * For DELETE/MOVE, revert the above INVALID change.  No
1918                  * modifications required since the original slot was preserved
1919                  * in the inactive slots.  Changing the active memslots also
1920                  * release slots_arch_lock.
1921                  */
1922                 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1923                         kvm_activate_memslot(kvm, invalid_slot, old);
1924                         kfree(invalid_slot);
1925                 } else {
1926                         mutex_unlock(&kvm->slots_arch_lock);
1927                 }
1928                 return r;
1929         }
1930 
1931         /*
1932          * For DELETE and MOVE, the working slot is now active as the INVALID
1933          * version of the old slot.  MOVE is particularly special as it reuses
1934          * the old slot and returns a copy of the old slot (in working_slot).
1935          * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1936          * old slot is detached but otherwise preserved.
1937          */
1938         if (change == KVM_MR_CREATE)
1939                 kvm_create_memslot(kvm, new);
1940         else if (change == KVM_MR_DELETE)
1941                 kvm_delete_memslot(kvm, old, invalid_slot);
1942         else if (change == KVM_MR_MOVE)
1943                 kvm_move_memslot(kvm, old, new, invalid_slot);
1944         else if (change == KVM_MR_FLAGS_ONLY)
1945                 kvm_update_flags_memslot(kvm, old, new);
1946         else
1947                 BUG();
1948 
1949         /* Free the temporary INVALID slot used for DELETE and MOVE. */
1950         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1951                 kfree(invalid_slot);
1952 
1953         /*
1954          * No need to refresh new->arch, changes after dropping slots_arch_lock
1955          * will directly hit the final, active memslot.  Architectures are
1956          * responsible for knowing that new->arch may be stale.
1957          */
1958         kvm_commit_memory_region(kvm, old, new, change);
1959 
1960         return 0;
1961 }
1962 
1963 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1964                                       gfn_t start, gfn_t end)
1965 {
1966         struct kvm_memslot_iter iter;
1967 
1968         kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1969                 if (iter.slot->id != id)
1970                         return true;
1971         }
1972 
1973         return false;
1974 }
1975 
1976 /*
1977  * Allocate some memory and give it an address in the guest physical address
1978  * space.
1979  *
1980  * Discontiguous memory is allowed, mostly for framebuffers.
1981  *
1982  * Must be called holding kvm->slots_lock for write.
1983  */
1984 int __kvm_set_memory_region(struct kvm *kvm,
1985                             const struct kvm_userspace_memory_region2 *mem)
1986 {
1987         struct kvm_memory_slot *old, *new;
1988         struct kvm_memslots *slots;
1989         enum kvm_mr_change change;
1990         unsigned long npages;
1991         gfn_t base_gfn;
1992         int as_id, id;
1993         int r;
1994 
1995         r = check_memory_region_flags(kvm, mem);
1996         if (r)
1997                 return r;
1998 
1999         as_id = mem->slot >> 16;
2000         id = (u16)mem->slot;
2001 
2002         /* General sanity checks */
2003         if ((mem->memory_size & (PAGE_SIZE - 1)) ||
2004             (mem->memory_size != (unsigned long)mem->memory_size))
2005                 return -EINVAL;
2006         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
2007                 return -EINVAL;
2008         /* We can read the guest memory with __xxx_user() later on. */
2009         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
2010             (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
2011              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
2012                         mem->memory_size))
2013                 return -EINVAL;
2014         if (mem->flags & KVM_MEM_GUEST_MEMFD &&
2015             (mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
2016              mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
2017                 return -EINVAL;
2018         if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
2019                 return -EINVAL;
2020         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
2021                 return -EINVAL;
2022         if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
2023                 return -EINVAL;
2024 
2025         slots = __kvm_memslots(kvm, as_id);
2026 
2027         /*
2028          * Note, the old memslot (and the pointer itself!) may be invalidated
2029          * and/or destroyed by kvm_set_memslot().
2030          */
2031         old = id_to_memslot(slots, id);
2032 
2033         if (!mem->memory_size) {
2034                 if (!old || !old->npages)
2035                         return -EINVAL;
2036 
2037                 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
2038                         return -EIO;
2039 
2040                 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
2041         }
2042 
2043         base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
2044         npages = (mem->memory_size >> PAGE_SHIFT);
2045 
2046         if (!old || !old->npages) {
2047                 change = KVM_MR_CREATE;
2048 
2049                 /*
2050                  * To simplify KVM internals, the total number of pages across
2051                  * all memslots must fit in an unsigned long.
2052                  */
2053                 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2054                         return -EINVAL;
2055         } else { /* Modify an existing slot. */
2056                 /* Private memslots are immutable, they can only be deleted. */
2057                 if (mem->flags & KVM_MEM_GUEST_MEMFD)
2058                         return -EINVAL;
2059                 if ((mem->userspace_addr != old->userspace_addr) ||
2060                     (npages != old->npages) ||
2061                     ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2062                         return -EINVAL;
2063 
2064                 if (base_gfn != old->base_gfn)
2065                         change = KVM_MR_MOVE;
2066                 else if (mem->flags != old->flags)
2067                         change = KVM_MR_FLAGS_ONLY;
2068                 else /* Nothing to change. */
2069                         return 0;
2070         }
2071 
2072         if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2073             kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2074                 return -EEXIST;
2075 
2076         /* Allocate a slot that will persist in the memslot. */
2077         new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2078         if (!new)
2079                 return -ENOMEM;
2080 
2081         new->as_id = as_id;
2082         new->id = id;
2083         new->base_gfn = base_gfn;
2084         new->npages = npages;
2085         new->flags = mem->flags;
2086         new->userspace_addr = mem->userspace_addr;
2087         if (mem->flags & KVM_MEM_GUEST_MEMFD) {
2088                 r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
2089                 if (r)
2090                         goto out;
2091         }
2092 
2093         r = kvm_set_memslot(kvm, old, new, change);
2094         if (r)
2095                 goto out_unbind;
2096 
2097         return 0;
2098 
2099 out_unbind:
2100         if (mem->flags & KVM_MEM_GUEST_MEMFD)
2101                 kvm_gmem_unbind(new);
2102 out:
2103         kfree(new);
2104         return r;
2105 }
2106 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2107 
2108 int kvm_set_memory_region(struct kvm *kvm,
2109                           const struct kvm_userspace_memory_region2 *mem)
2110 {
2111         int r;
2112 
2113         mutex_lock(&kvm->slots_lock);
2114         r = __kvm_set_memory_region(kvm, mem);
2115         mutex_unlock(&kvm->slots_lock);
2116         return r;
2117 }
2118 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2119 
2120 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2121                                           struct kvm_userspace_memory_region2 *mem)
2122 {
2123         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2124                 return -EINVAL;
2125 
2126         return kvm_set_memory_region(kvm, mem);
2127 }
2128 
2129 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2130 /**
2131  * kvm_get_dirty_log - get a snapshot of dirty pages
2132  * @kvm:        pointer to kvm instance
2133  * @log:        slot id and address to which we copy the log
2134  * @is_dirty:   set to '1' if any dirty pages were found
2135  * @memslot:    set to the associated memslot, always valid on success
2136  */
2137 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2138                       int *is_dirty, struct kvm_memory_slot **memslot)
2139 {
2140         struct kvm_memslots *slots;
2141         int i, as_id, id;
2142         unsigned long n;
2143         unsigned long any = 0;
2144 
2145         /* Dirty ring tracking may be exclusive to dirty log tracking */
2146         if (!kvm_use_dirty_bitmap(kvm))
2147                 return -ENXIO;
2148 
2149         *memslot = NULL;
2150         *is_dirty = 0;
2151 
2152         as_id = log->slot >> 16;
2153         id = (u16)log->slot;
2154         if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2155                 return -EINVAL;
2156 
2157         slots = __kvm_memslots(kvm, as_id);
2158         *memslot = id_to_memslot(slots, id);
2159         if (!(*memslot) || !(*memslot)->dirty_bitmap)
2160                 return -ENOENT;
2161 
2162         kvm_arch_sync_dirty_log(kvm, *memslot);
2163 
2164         n = kvm_dirty_bitmap_bytes(*memslot);
2165 
2166         for (i = 0; !any && i < n/sizeof(long); ++i)
2167                 any = (*memslot)->dirty_bitmap[i];
2168 
2169         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2170                 return -EFAULT;
2171 
2172         if (any)
2173                 *is_dirty = 1;
2174         return 0;
2175 }
2176 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2177 
2178 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2179 /**
2180  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2181  *      and reenable dirty page tracking for the corresponding pages.
2182  * @kvm:        pointer to kvm instance
2183  * @log:        slot id and address to which we copy the log
2184  *
2185  * We need to keep it in mind that VCPU threads can write to the bitmap
2186  * concurrently. So, to avoid losing track of dirty pages we keep the
2187  * following order:
2188  *
2189  *    1. Take a snapshot of the bit and clear it if needed.
2190  *    2. Write protect the corresponding page.
2191  *    3. Copy the snapshot to the userspace.
2192  *    4. Upon return caller flushes TLB's if needed.
2193  *
2194  * Between 2 and 4, the guest may write to the page using the remaining TLB
2195  * entry.  This is not a problem because the page is reported dirty using
2196  * the snapshot taken before and step 4 ensures that writes done after
2197  * exiting to userspace will be logged for the next call.
2198  *
2199  */
2200 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2201 {
2202         struct kvm_memslots *slots;
2203         struct kvm_memory_slot *memslot;
2204         int i, as_id, id;
2205         unsigned long n;
2206         unsigned long *dirty_bitmap;
2207         unsigned long *dirty_bitmap_buffer;
2208         bool flush;
2209 
2210         /* Dirty ring tracking may be exclusive to dirty log tracking */
2211         if (!kvm_use_dirty_bitmap(kvm))
2212                 return -ENXIO;
2213 
2214         as_id = log->slot >> 16;
2215         id = (u16)log->slot;
2216         if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2217                 return -EINVAL;
2218 
2219         slots = __kvm_memslots(kvm, as_id);
2220         memslot = id_to_memslot(slots, id);
2221         if (!memslot || !memslot->dirty_bitmap)
2222                 return -ENOENT;
2223 
2224         dirty_bitmap = memslot->dirty_bitmap;
2225 
2226         kvm_arch_sync_dirty_log(kvm, memslot);
2227 
2228         n = kvm_dirty_bitmap_bytes(memslot);
2229         flush = false;
2230         if (kvm->manual_dirty_log_protect) {
2231                 /*
2232                  * Unlike kvm_get_dirty_log, we always return false in *flush,
2233                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2234                  * is some code duplication between this function and
2235                  * kvm_get_dirty_log, but hopefully all architecture
2236                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2237                  * can be eliminated.
2238                  */
2239                 dirty_bitmap_buffer = dirty_bitmap;
2240         } else {
2241                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2242                 memset(dirty_bitmap_buffer, 0, n);
2243 
2244                 KVM_MMU_LOCK(kvm);
2245                 for (i = 0; i < n / sizeof(long); i++) {
2246                         unsigned long mask;
2247                         gfn_t offset;
2248 
2249                         if (!dirty_bitmap[i])
2250                                 continue;
2251 
2252                         flush = true;
2253                         mask = xchg(&dirty_bitmap[i], 0);
2254                         dirty_bitmap_buffer[i] = mask;
2255 
2256                         offset = i * BITS_PER_LONG;
2257                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2258                                                                 offset, mask);
2259                 }
2260                 KVM_MMU_UNLOCK(kvm);
2261         }
2262 
2263         if (flush)
2264                 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2265 
2266         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2267                 return -EFAULT;
2268         return 0;
2269 }
2270 
2271 
2272 /**
2273  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2274  * @kvm: kvm instance
2275  * @log: slot id and address to which we copy the log
2276  *
2277  * Steps 1-4 below provide general overview of dirty page logging. See
2278  * kvm_get_dirty_log_protect() function description for additional details.
2279  *
2280  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2281  * always flush the TLB (step 4) even if previous step failed  and the dirty
2282  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2283  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2284  * writes will be marked dirty for next log read.
2285  *
2286  *   1. Take a snapshot of the bit and clear it if needed.
2287  *   2. Write protect the corresponding page.
2288  *   3. Copy the snapshot to the userspace.
2289  *   4. Flush TLB's if needed.
2290  */
2291 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2292                                       struct kvm_dirty_log *log)
2293 {
2294         int r;
2295 
2296         mutex_lock(&kvm->slots_lock);
2297 
2298         r = kvm_get_dirty_log_protect(kvm, log);
2299 
2300         mutex_unlock(&kvm->slots_lock);
2301         return r;
2302 }
2303 
2304 /**
2305  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2306  *      and reenable dirty page tracking for the corresponding pages.
2307  * @kvm:        pointer to kvm instance
2308  * @log:        slot id and address from which to fetch the bitmap of dirty pages
2309  */
2310 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2311                                        struct kvm_clear_dirty_log *log)
2312 {
2313         struct kvm_memslots *slots;
2314         struct kvm_memory_slot *memslot;
2315         int as_id, id;
2316         gfn_t offset;
2317         unsigned long i, n;
2318         unsigned long *dirty_bitmap;
2319         unsigned long *dirty_bitmap_buffer;
2320         bool flush;
2321 
2322         /* Dirty ring tracking may be exclusive to dirty log tracking */
2323         if (!kvm_use_dirty_bitmap(kvm))
2324                 return -ENXIO;
2325 
2326         as_id = log->slot >> 16;
2327         id = (u16)log->slot;
2328         if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2329                 return -EINVAL;
2330 
2331         if (log->first_page & 63)
2332                 return -EINVAL;
2333 
2334         slots = __kvm_memslots(kvm, as_id);
2335         memslot = id_to_memslot(slots, id);
2336         if (!memslot || !memslot->dirty_bitmap)
2337                 return -ENOENT;
2338 
2339         dirty_bitmap = memslot->dirty_bitmap;
2340 
2341         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2342 
2343         if (log->first_page > memslot->npages ||
2344             log->num_pages > memslot->npages - log->first_page ||
2345             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2346             return -EINVAL;
2347 
2348         kvm_arch_sync_dirty_log(kvm, memslot);
2349 
2350         flush = false;
2351         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2352         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2353                 return -EFAULT;
2354 
2355         KVM_MMU_LOCK(kvm);
2356         for (offset = log->first_page, i = offset / BITS_PER_LONG,
2357                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2358              i++, offset += BITS_PER_LONG) {
2359                 unsigned long mask = *dirty_bitmap_buffer++;
2360                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2361                 if (!mask)
2362                         continue;
2363 
2364                 mask &= atomic_long_fetch_andnot(mask, p);
2365 
2366                 /*
2367                  * mask contains the bits that really have been cleared.  This
2368                  * never includes any bits beyond the length of the memslot (if
2369                  * the length is not aligned to 64 pages), therefore it is not
2370                  * a problem if userspace sets them in log->dirty_bitmap.
2371                 */
2372                 if (mask) {
2373                         flush = true;
2374                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2375                                                                 offset, mask);
2376                 }
2377         }
2378         KVM_MMU_UNLOCK(kvm);
2379 
2380         if (flush)
2381                 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2382 
2383         return 0;
2384 }
2385 
2386 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2387                                         struct kvm_clear_dirty_log *log)
2388 {
2389         int r;
2390 
2391         mutex_lock(&kvm->slots_lock);
2392 
2393         r = kvm_clear_dirty_log_protect(kvm, log);
2394 
2395         mutex_unlock(&kvm->slots_lock);
2396         return r;
2397 }
2398 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2399 
2400 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2401 static u64 kvm_supported_mem_attributes(struct kvm *kvm)
2402 {
2403         if (!kvm || kvm_arch_has_private_mem(kvm))
2404                 return KVM_MEMORY_ATTRIBUTE_PRIVATE;
2405 
2406         return 0;
2407 }
2408 
2409 /*
2410  * Returns true if _all_ gfns in the range [@start, @end) have attributes
2411  * such that the bits in @mask match @attrs.
2412  */
2413 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2414                                      unsigned long mask, unsigned long attrs)
2415 {
2416         XA_STATE(xas, &kvm->mem_attr_array, start);
2417         unsigned long index;
2418         void *entry;
2419 
2420         mask &= kvm_supported_mem_attributes(kvm);
2421         if (attrs & ~mask)
2422                 return false;
2423 
2424         if (end == start + 1)
2425                 return (kvm_get_memory_attributes(kvm, start) & mask) == attrs;
2426 
2427         guard(rcu)();
2428         if (!attrs)
2429                 return !xas_find(&xas, end - 1);
2430 
2431         for (index = start; index < end; index++) {
2432                 do {
2433                         entry = xas_next(&xas);
2434                 } while (xas_retry(&xas, entry));
2435 
2436                 if (xas.xa_index != index ||
2437                     (xa_to_value(entry) & mask) != attrs)
2438                         return false;
2439         }
2440 
2441         return true;
2442 }
2443 
2444 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
2445                                                  struct kvm_mmu_notifier_range *range)
2446 {
2447         struct kvm_gfn_range gfn_range;
2448         struct kvm_memory_slot *slot;
2449         struct kvm_memslots *slots;
2450         struct kvm_memslot_iter iter;
2451         bool found_memslot = false;
2452         bool ret = false;
2453         int i;
2454 
2455         gfn_range.arg = range->arg;
2456         gfn_range.may_block = range->may_block;
2457 
2458         for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
2459                 slots = __kvm_memslots(kvm, i);
2460 
2461                 kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
2462                         slot = iter.slot;
2463                         gfn_range.slot = slot;
2464 
2465                         gfn_range.start = max(range->start, slot->base_gfn);
2466                         gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
2467                         if (gfn_range.start >= gfn_range.end)
2468                                 continue;
2469 
2470                         if (!found_memslot) {
2471                                 found_memslot = true;
2472                                 KVM_MMU_LOCK(kvm);
2473                                 if (!IS_KVM_NULL_FN(range->on_lock))
2474                                         range->on_lock(kvm);
2475                         }
2476 
2477                         ret |= range->handler(kvm, &gfn_range);
2478                 }
2479         }
2480 
2481         if (range->flush_on_ret && ret)
2482                 kvm_flush_remote_tlbs(kvm);
2483 
2484         if (found_memslot)
2485                 KVM_MMU_UNLOCK(kvm);
2486 }
2487 
2488 static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
2489                                           struct kvm_gfn_range *range)
2490 {
2491         /*
2492          * Unconditionally add the range to the invalidation set, regardless of
2493          * whether or not the arch callback actually needs to zap SPTEs.  E.g.
2494          * if KVM supports RWX attributes in the future and the attributes are
2495          * going from R=>RW, zapping isn't strictly necessary.  Unconditionally
2496          * adding the range allows KVM to require that MMU invalidations add at
2497          * least one range between begin() and end(), e.g. allows KVM to detect
2498          * bugs where the add() is missed.  Relaxing the rule *might* be safe,
2499          * but it's not obvious that allowing new mappings while the attributes
2500          * are in flux is desirable or worth the complexity.
2501          */
2502         kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
2503 
2504         return kvm_arch_pre_set_memory_attributes(kvm, range);
2505 }
2506 
2507 /* Set @attributes for the gfn range [@start, @end). */
2508 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2509                                      unsigned long attributes)
2510 {
2511         struct kvm_mmu_notifier_range pre_set_range = {
2512                 .start = start,
2513                 .end = end,
2514                 .handler = kvm_pre_set_memory_attributes,
2515                 .on_lock = kvm_mmu_invalidate_begin,
2516                 .flush_on_ret = true,
2517                 .may_block = true,
2518         };
2519         struct kvm_mmu_notifier_range post_set_range = {
2520                 .start = start,
2521                 .end = end,
2522                 .arg.attributes = attributes,
2523                 .handler = kvm_arch_post_set_memory_attributes,
2524                 .on_lock = kvm_mmu_invalidate_end,
2525                 .may_block = true,
2526         };
2527         unsigned long i;
2528         void *entry;
2529         int r = 0;
2530 
2531         entry = attributes ? xa_mk_value(attributes) : NULL;
2532 
2533         mutex_lock(&kvm->slots_lock);
2534 
2535         /* Nothing to do if the entire range as the desired attributes. */
2536         if (kvm_range_has_memory_attributes(kvm, start, end, ~0, attributes))
2537                 goto out_unlock;
2538 
2539         /*
2540          * Reserve memory ahead of time to avoid having to deal with failures
2541          * partway through setting the new attributes.
2542          */
2543         for (i = start; i < end; i++) {
2544                 r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
2545                 if (r)
2546                         goto out_unlock;
2547         }
2548 
2549         kvm_handle_gfn_range(kvm, &pre_set_range);
2550 
2551         for (i = start; i < end; i++) {
2552                 r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
2553                                     GFP_KERNEL_ACCOUNT));
2554                 KVM_BUG_ON(r, kvm);
2555         }
2556 
2557         kvm_handle_gfn_range(kvm, &post_set_range);
2558 
2559 out_unlock:
2560         mutex_unlock(&kvm->slots_lock);
2561 
2562         return r;
2563 }
2564 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
2565                                            struct kvm_memory_attributes *attrs)
2566 {
2567         gfn_t start, end;
2568 
2569         /* flags is currently not used. */
2570         if (attrs->flags)
2571                 return -EINVAL;
2572         if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
2573                 return -EINVAL;
2574         if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
2575                 return -EINVAL;
2576         if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
2577                 return -EINVAL;
2578 
2579         start = attrs->address >> PAGE_SHIFT;
2580         end = (attrs->address + attrs->size) >> PAGE_SHIFT;
2581 
2582         /*
2583          * xarray tracks data using "unsigned long", and as a result so does
2584          * KVM.  For simplicity, supports generic attributes only on 64-bit
2585          * architectures.
2586          */
2587         BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
2588 
2589         return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
2590 }
2591 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2592 
2593 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2594 {
2595         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2596 }
2597 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2598 
2599 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2600 {
2601         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2602         u64 gen = slots->generation;
2603         struct kvm_memory_slot *slot;
2604 
2605         /*
2606          * This also protects against using a memslot from a different address space,
2607          * since different address spaces have different generation numbers.
2608          */
2609         if (unlikely(gen != vcpu->last_used_slot_gen)) {
2610                 vcpu->last_used_slot = NULL;
2611                 vcpu->last_used_slot_gen = gen;
2612         }
2613 
2614         slot = try_get_memslot(vcpu->last_used_slot, gfn);
2615         if (slot)
2616                 return slot;
2617 
2618         /*
2619          * Fall back to searching all memslots. We purposely use
2620          * search_memslots() instead of __gfn_to_memslot() to avoid
2621          * thrashing the VM-wide last_used_slot in kvm_memslots.
2622          */
2623         slot = search_memslots(slots, gfn, false);
2624         if (slot) {
2625                 vcpu->last_used_slot = slot;
2626                 return slot;
2627         }
2628 
2629         return NULL;
2630 }
2631 
2632 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2633 {
2634         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2635 
2636         return kvm_is_visible_memslot(memslot);
2637 }
2638 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2639 
2640 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2641 {
2642         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2643 
2644         return kvm_is_visible_memslot(memslot);
2645 }
2646 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2647 
2648 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2649 {
2650         struct vm_area_struct *vma;
2651         unsigned long addr, size;
2652 
2653         size = PAGE_SIZE;
2654 
2655         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2656         if (kvm_is_error_hva(addr))
2657                 return PAGE_SIZE;
2658 
2659         mmap_read_lock(current->mm);
2660         vma = find_vma(current->mm, addr);
2661         if (!vma)
2662                 goto out;
2663 
2664         size = vma_kernel_pagesize(vma);
2665 
2666 out:
2667         mmap_read_unlock(current->mm);
2668 
2669         return size;
2670 }
2671 
2672 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2673 {
2674         return slot->flags & KVM_MEM_READONLY;
2675 }
2676 
2677 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2678                                        gfn_t *nr_pages, bool write)
2679 {
2680         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2681                 return KVM_HVA_ERR_BAD;
2682 
2683         if (memslot_is_readonly(slot) && write)
2684                 return KVM_HVA_ERR_RO_BAD;
2685 
2686         if (nr_pages)
2687                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2688 
2689         return __gfn_to_hva_memslot(slot, gfn);
2690 }
2691 
2692 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2693                                      gfn_t *nr_pages)
2694 {
2695         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2696 }
2697 
2698 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2699                                         gfn_t gfn)
2700 {
2701         return gfn_to_hva_many(slot, gfn, NULL);
2702 }
2703 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2704 
2705 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2706 {
2707         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2708 }
2709 EXPORT_SYMBOL_GPL(gfn_to_hva);
2710 
2711 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2712 {
2713         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2714 }
2715 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2716 
2717 /*
2718  * Return the hva of a @gfn and the R/W attribute if possible.
2719  *
2720  * @slot: the kvm_memory_slot which contains @gfn
2721  * @gfn: the gfn to be translated
2722  * @writable: used to return the read/write attribute of the @slot if the hva
2723  * is valid and @writable is not NULL
2724  */
2725 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2726                                       gfn_t gfn, bool *writable)
2727 {
2728         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2729 
2730         if (!kvm_is_error_hva(hva) && writable)
2731                 *writable = !memslot_is_readonly(slot);
2732 
2733         return hva;
2734 }
2735 
2736 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2737 {
2738         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2739 
2740         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2741 }
2742 
2743 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2744 {
2745         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2746 
2747         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2748 }
2749 
2750 static inline int check_user_page_hwpoison(unsigned long addr)
2751 {
2752         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2753 
2754         rc = get_user_pages(addr, 1, flags, NULL);
2755         return rc == -EHWPOISON;
2756 }
2757 
2758 /*
2759  * The fast path to get the writable pfn which will be stored in @pfn,
2760  * true indicates success, otherwise false is returned.  It's also the
2761  * only part that runs if we can in atomic context.
2762  */
2763 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2764                             bool *writable, kvm_pfn_t *pfn)
2765 {
2766         struct page *page[1];
2767 
2768         /*
2769          * Fast pin a writable pfn only if it is a write fault request
2770          * or the caller allows to map a writable pfn for a read fault
2771          * request.
2772          */
2773         if (!(write_fault || writable))
2774                 return false;
2775 
2776         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2777                 *pfn = page_to_pfn(page[0]);
2778 
2779                 if (writable)
2780                         *writable = true;
2781                 return true;
2782         }
2783 
2784         return false;
2785 }
2786 
2787 /*
2788  * The slow path to get the pfn of the specified host virtual address,
2789  * 1 indicates success, -errno is returned if error is detected.
2790  */
2791 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2792                            bool interruptible, bool *writable, kvm_pfn_t *pfn)
2793 {
2794         /*
2795          * When a VCPU accesses a page that is not mapped into the secondary
2796          * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2797          * make progress. We always want to honor NUMA hinting faults in that
2798          * case, because GUP usage corresponds to memory accesses from the VCPU.
2799          * Otherwise, we'd not trigger NUMA hinting faults once a page is
2800          * mapped into the secondary MMU and gets accessed by a VCPU.
2801          *
2802          * Note that get_user_page_fast_only() and FOLL_WRITE for now
2803          * implicitly honor NUMA hinting faults and don't need this flag.
2804          */
2805         unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT;
2806         struct page *page;
2807         int npages;
2808 
2809         might_sleep();
2810 
2811         if (writable)
2812                 *writable = write_fault;
2813 
2814         if (write_fault)
2815                 flags |= FOLL_WRITE;
2816         if (async)
2817                 flags |= FOLL_NOWAIT;
2818         if (interruptible)
2819                 flags |= FOLL_INTERRUPTIBLE;
2820 
2821         npages = get_user_pages_unlocked(addr, 1, &page, flags);
2822         if (npages != 1)
2823                 return npages;
2824 
2825         /* map read fault as writable if possible */
2826         if (unlikely(!write_fault) && writable) {
2827                 struct page *wpage;
2828 
2829                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2830                         *writable = true;
2831                         put_page(page);
2832                         page = wpage;
2833                 }
2834         }
2835         *pfn = page_to_pfn(page);
2836         return npages;
2837 }
2838 
2839 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2840 {
2841         if (unlikely(!(vma->vm_flags & VM_READ)))
2842                 return false;
2843 
2844         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2845                 return false;
2846 
2847         return true;
2848 }
2849 
2850 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2851 {
2852         struct page *page = kvm_pfn_to_refcounted_page(pfn);
2853 
2854         if (!page)
2855                 return 1;
2856 
2857         return get_page_unless_zero(page);
2858 }
2859 
2860 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2861                                unsigned long addr, bool write_fault,
2862                                bool *writable, kvm_pfn_t *p_pfn)
2863 {
2864         kvm_pfn_t pfn;
2865         pte_t *ptep;
2866         pte_t pte;
2867         spinlock_t *ptl;
2868         int r;
2869 
2870         r = follow_pte(vma, addr, &ptep, &ptl);
2871         if (r) {
2872                 /*
2873                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2874                  * not call the fault handler, so do it here.
2875                  */
2876                 bool unlocked = false;
2877                 r = fixup_user_fault(current->mm, addr,
2878                                      (write_fault ? FAULT_FLAG_WRITE : 0),
2879                                      &unlocked);
2880                 if (unlocked)
2881                         return -EAGAIN;
2882                 if (r)
2883                         return r;
2884 
2885                 r = follow_pte(vma, addr, &ptep, &ptl);
2886                 if (r)
2887                         return r;
2888         }
2889 
2890         pte = ptep_get(ptep);
2891 
2892         if (write_fault && !pte_write(pte)) {
2893                 pfn = KVM_PFN_ERR_RO_FAULT;
2894                 goto out;
2895         }
2896 
2897         if (writable)
2898                 *writable = pte_write(pte);
2899         pfn = pte_pfn(pte);
2900 
2901         /*
2902          * Get a reference here because callers of *hva_to_pfn* and
2903          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2904          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2905          * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2906          * simply do nothing for reserved pfns.
2907          *
2908          * Whoever called remap_pfn_range is also going to call e.g.
2909          * unmap_mapping_range before the underlying pages are freed,
2910          * causing a call to our MMU notifier.
2911          *
2912          * Certain IO or PFNMAP mappings can be backed with valid
2913          * struct pages, but be allocated without refcounting e.g.,
2914          * tail pages of non-compound higher order allocations, which
2915          * would then underflow the refcount when the caller does the
2916          * required put_page. Don't allow those pages here.
2917          */
2918         if (!kvm_try_get_pfn(pfn))
2919                 r = -EFAULT;
2920 
2921 out:
2922         pte_unmap_unlock(ptep, ptl);
2923         *p_pfn = pfn;
2924 
2925         return r;
2926 }
2927 
2928 /*
2929  * Pin guest page in memory and return its pfn.
2930  * @addr: host virtual address which maps memory to the guest
2931  * @atomic: whether this function is forbidden from sleeping
2932  * @interruptible: whether the process can be interrupted by non-fatal signals
2933  * @async: whether this function need to wait IO complete if the
2934  *         host page is not in the memory
2935  * @write_fault: whether we should get a writable host page
2936  * @writable: whether it allows to map a writable host page for !@write_fault
2937  *
2938  * The function will map a writable host page for these two cases:
2939  * 1): @write_fault = true
2940  * 2): @write_fault = false && @writable, @writable will tell the caller
2941  *     whether the mapping is writable.
2942  */
2943 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2944                      bool *async, bool write_fault, bool *writable)
2945 {
2946         struct vm_area_struct *vma;
2947         kvm_pfn_t pfn;
2948         int npages, r;
2949 
2950         /* we can do it either atomically or asynchronously, not both */
2951         BUG_ON(atomic && async);
2952 
2953         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2954                 return pfn;
2955 
2956         if (atomic)
2957                 return KVM_PFN_ERR_FAULT;
2958 
2959         npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2960                                  writable, &pfn);
2961         if (npages == 1)
2962                 return pfn;
2963         if (npages == -EINTR)
2964                 return KVM_PFN_ERR_SIGPENDING;
2965 
2966         mmap_read_lock(current->mm);
2967         if (npages == -EHWPOISON ||
2968               (!async && check_user_page_hwpoison(addr))) {
2969                 pfn = KVM_PFN_ERR_HWPOISON;
2970                 goto exit;
2971         }
2972 
2973 retry:
2974         vma = vma_lookup(current->mm, addr);
2975 
2976         if (vma == NULL)
2977                 pfn = KVM_PFN_ERR_FAULT;
2978         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2979                 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2980                 if (r == -EAGAIN)
2981                         goto retry;
2982                 if (r < 0)
2983                         pfn = KVM_PFN_ERR_FAULT;
2984         } else {
2985                 if (async && vma_is_valid(vma, write_fault))
2986                         *async = true;
2987                 pfn = KVM_PFN_ERR_FAULT;
2988         }
2989 exit:
2990         mmap_read_unlock(current->mm);
2991         return pfn;
2992 }
2993 
2994 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2995                                bool atomic, bool interruptible, bool *async,
2996                                bool write_fault, bool *writable, hva_t *hva)
2997 {
2998         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2999 
3000         if (hva)
3001                 *hva = addr;
3002 
3003         if (kvm_is_error_hva(addr)) {
3004                 if (writable)
3005                         *writable = false;
3006 
3007                 return addr == KVM_HVA_ERR_RO_BAD ? KVM_PFN_ERR_RO_FAULT :
3008                                                     KVM_PFN_NOSLOT;
3009         }
3010 
3011         /* Do not map writable pfn in the readonly memslot. */
3012         if (writable && memslot_is_readonly(slot)) {
3013                 *writable = false;
3014                 writable = NULL;
3015         }
3016 
3017         return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
3018                           writable);
3019 }
3020 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
3021 
3022 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
3023                       bool *writable)
3024 {
3025         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
3026                                     NULL, write_fault, writable, NULL);
3027 }
3028 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
3029 
3030 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
3031 {
3032         return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
3033                                     NULL, NULL);
3034 }
3035 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
3036 
3037 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
3038 {
3039         return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
3040                                     NULL, NULL);
3041 }
3042 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
3043 
3044 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
3045 {
3046         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3047 }
3048 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
3049 
3050 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
3051 {
3052         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
3053 }
3054 EXPORT_SYMBOL_GPL(gfn_to_pfn);
3055 
3056 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
3057 {
3058         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3059 }
3060 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
3061 
3062 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3063                             struct page **pages, int nr_pages)
3064 {
3065         unsigned long addr;
3066         gfn_t entry = 0;
3067 
3068         addr = gfn_to_hva_many(slot, gfn, &entry);
3069         if (kvm_is_error_hva(addr))
3070                 return -1;
3071 
3072         if (entry < nr_pages)
3073                 return 0;
3074 
3075         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
3076 }
3077 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
3078 
3079 /*
3080  * Do not use this helper unless you are absolutely certain the gfn _must_ be
3081  * backed by 'struct page'.  A valid example is if the backing memslot is
3082  * controlled by KVM.  Note, if the returned page is valid, it's refcount has
3083  * been elevated by gfn_to_pfn().
3084  */
3085 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
3086 {
3087         struct page *page;
3088         kvm_pfn_t pfn;
3089 
3090         pfn = gfn_to_pfn(kvm, gfn);
3091 
3092         if (is_error_noslot_pfn(pfn))
3093                 return KVM_ERR_PTR_BAD_PAGE;
3094 
3095         page = kvm_pfn_to_refcounted_page(pfn);
3096         if (!page)
3097                 return KVM_ERR_PTR_BAD_PAGE;
3098 
3099         return page;
3100 }
3101 EXPORT_SYMBOL_GPL(gfn_to_page);
3102 
3103 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
3104 {
3105         if (dirty)
3106                 kvm_release_pfn_dirty(pfn);
3107         else
3108                 kvm_release_pfn_clean(pfn);
3109 }
3110 
3111 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
3112 {
3113         kvm_pfn_t pfn;
3114         void *hva = NULL;
3115         struct page *page = KVM_UNMAPPED_PAGE;
3116 
3117         if (!map)
3118                 return -EINVAL;
3119 
3120         pfn = gfn_to_pfn(vcpu->kvm, gfn);
3121         if (is_error_noslot_pfn(pfn))
3122                 return -EINVAL;
3123 
3124         if (pfn_valid(pfn)) {
3125                 page = pfn_to_page(pfn);
3126                 hva = kmap(page);
3127 #ifdef CONFIG_HAS_IOMEM
3128         } else {
3129                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
3130 #endif
3131         }
3132 
3133         if (!hva)
3134                 return -EFAULT;
3135 
3136         map->page = page;
3137         map->hva = hva;
3138         map->pfn = pfn;
3139         map->gfn = gfn;
3140 
3141         return 0;
3142 }
3143 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
3144 
3145 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
3146 {
3147         if (!map)
3148                 return;
3149 
3150         if (!map->hva)
3151                 return;
3152 
3153         if (map->page != KVM_UNMAPPED_PAGE)
3154                 kunmap(map->page);
3155 #ifdef CONFIG_HAS_IOMEM
3156         else
3157                 memunmap(map->hva);
3158 #endif
3159 
3160         if (dirty)
3161                 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
3162 
3163         kvm_release_pfn(map->pfn, dirty);
3164 
3165         map->hva = NULL;
3166         map->page = NULL;
3167 }
3168 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
3169 
3170 static bool kvm_is_ad_tracked_page(struct page *page)
3171 {
3172         /*
3173          * Per page-flags.h, pages tagged PG_reserved "should in general not be
3174          * touched (e.g. set dirty) except by its owner".
3175          */
3176         return !PageReserved(page);
3177 }
3178 
3179 static void kvm_set_page_dirty(struct page *page)
3180 {
3181         if (kvm_is_ad_tracked_page(page))
3182                 SetPageDirty(page);
3183 }
3184 
3185 static void kvm_set_page_accessed(struct page *page)
3186 {
3187         if (kvm_is_ad_tracked_page(page))
3188                 mark_page_accessed(page);
3189 }
3190 
3191 void kvm_release_page_clean(struct page *page)
3192 {
3193         WARN_ON(is_error_page(page));
3194 
3195         kvm_set_page_accessed(page);
3196         put_page(page);
3197 }
3198 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
3199 
3200 void kvm_release_pfn_clean(kvm_pfn_t pfn)
3201 {
3202         struct page *page;
3203 
3204         if (is_error_noslot_pfn(pfn))
3205                 return;
3206 
3207         page = kvm_pfn_to_refcounted_page(pfn);
3208         if (!page)
3209                 return;
3210 
3211         kvm_release_page_clean(page);
3212 }
3213 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
3214 
3215 void kvm_release_page_dirty(struct page *page)
3216 {
3217         WARN_ON(is_error_page(page));
3218 
3219         kvm_set_page_dirty(page);
3220         kvm_release_page_clean(page);
3221 }
3222 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
3223 
3224 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
3225 {
3226         struct page *page;
3227 
3228         if (is_error_noslot_pfn(pfn))
3229                 return;
3230 
3231         page = kvm_pfn_to_refcounted_page(pfn);
3232         if (!page)
3233                 return;
3234 
3235         kvm_release_page_dirty(page);
3236 }
3237 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
3238 
3239 /*
3240  * Note, checking for an error/noslot pfn is the caller's responsibility when
3241  * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
3242  * "set" helpers are not to be used when the pfn might point at garbage.
3243  */
3244 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
3245 {
3246         if (WARN_ON(is_error_noslot_pfn(pfn)))
3247                 return;
3248 
3249         if (pfn_valid(pfn))
3250                 kvm_set_page_dirty(pfn_to_page(pfn));
3251 }
3252 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
3253 
3254 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
3255 {
3256         if (WARN_ON(is_error_noslot_pfn(pfn)))
3257                 return;
3258 
3259         if (pfn_valid(pfn))
3260                 kvm_set_page_accessed(pfn_to_page(pfn));
3261 }
3262 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
3263 
3264 static int next_segment(unsigned long len, int offset)
3265 {
3266         if (len > PAGE_SIZE - offset)
3267                 return PAGE_SIZE - offset;
3268         else
3269                 return len;
3270 }
3271 
3272 /* Copy @len bytes from guest memory at '(@gfn * PAGE_SIZE) + @offset' to @data */
3273 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3274                                  void *data, int offset, int len)
3275 {
3276         int r;
3277         unsigned long addr;
3278 
3279         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3280         if (kvm_is_error_hva(addr))
3281                 return -EFAULT;
3282         r = __copy_from_user(data, (void __user *)addr + offset, len);
3283         if (r)
3284                 return -EFAULT;
3285         return 0;
3286 }
3287 
3288 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3289                         int len)
3290 {
3291         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3292 
3293         return __kvm_read_guest_page(slot, gfn, data, offset, len);
3294 }
3295 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3296 
3297 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3298                              int offset, int len)
3299 {
3300         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3301 
3302         return __kvm_read_guest_page(slot, gfn, data, offset, len);
3303 }
3304 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3305 
3306 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3307 {
3308         gfn_t gfn = gpa >> PAGE_SHIFT;
3309         int seg;
3310         int offset = offset_in_page(gpa);
3311         int ret;
3312 
3313         while ((seg = next_segment(len, offset)) != 0) {
3314                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3315                 if (ret < 0)
3316                         return ret;
3317                 offset = 0;
3318                 len -= seg;
3319                 data += seg;
3320                 ++gfn;
3321         }
3322         return 0;
3323 }
3324 EXPORT_SYMBOL_GPL(kvm_read_guest);
3325 
3326 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3327 {
3328         gfn_t gfn = gpa >> PAGE_SHIFT;
3329         int seg;
3330         int offset = offset_in_page(gpa);
3331         int ret;
3332 
3333         while ((seg = next_segment(len, offset)) != 0) {
3334                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3335                 if (ret < 0)
3336                         return ret;
3337                 offset = 0;
3338                 len -= seg;
3339                 data += seg;
3340                 ++gfn;
3341         }
3342         return 0;
3343 }
3344 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3345 
3346 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3347                                    void *data, int offset, unsigned long len)
3348 {
3349         int r;
3350         unsigned long addr;
3351 
3352         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3353         if (kvm_is_error_hva(addr))
3354                 return -EFAULT;
3355         pagefault_disable();
3356         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3357         pagefault_enable();
3358         if (r)
3359                 return -EFAULT;
3360         return 0;
3361 }
3362 
3363 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3364                                void *data, unsigned long len)
3365 {
3366         gfn_t gfn = gpa >> PAGE_SHIFT;
3367         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3368         int offset = offset_in_page(gpa);
3369 
3370         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3371 }
3372 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3373 
3374 /* Copy @len bytes from @data into guest memory at '(@gfn * PAGE_SIZE) + @offset' */
3375 static int __kvm_write_guest_page(struct kvm *kvm,
3376                                   struct kvm_memory_slot *memslot, gfn_t gfn,
3377                                   const void *data, int offset, int len)
3378 {
3379         int r;
3380         unsigned long addr;
3381 
3382         addr = gfn_to_hva_memslot(memslot, gfn);
3383         if (kvm_is_error_hva(addr))
3384                 return -EFAULT;
3385         r = __copy_to_user((void __user *)addr + offset, data, len);
3386         if (r)
3387                 return -EFAULT;
3388         mark_page_dirty_in_slot(kvm, memslot, gfn);
3389         return 0;
3390 }
3391 
3392 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3393                          const void *data, int offset, int len)
3394 {
3395         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3396 
3397         return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3398 }
3399 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3400 
3401 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3402                               const void *data, int offset, int len)
3403 {
3404         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3405 
3406         return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3407 }
3408 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3409 
3410 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3411                     unsigned long len)
3412 {
3413         gfn_t gfn = gpa >> PAGE_SHIFT;
3414         int seg;
3415         int offset = offset_in_page(gpa);
3416         int ret;
3417 
3418         while ((seg = next_segment(len, offset)) != 0) {
3419                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3420                 if (ret < 0)
3421                         return ret;
3422                 offset = 0;
3423                 len -= seg;
3424                 data += seg;
3425                 ++gfn;
3426         }
3427         return 0;
3428 }
3429 EXPORT_SYMBOL_GPL(kvm_write_guest);
3430 
3431 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3432                          unsigned long len)
3433 {
3434         gfn_t gfn = gpa >> PAGE_SHIFT;
3435         int seg;
3436         int offset = offset_in_page(gpa);
3437         int ret;
3438 
3439         while ((seg = next_segment(len, offset)) != 0) {
3440                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3441                 if (ret < 0)
3442                         return ret;
3443                 offset = 0;
3444                 len -= seg;
3445                 data += seg;
3446                 ++gfn;
3447         }
3448         return 0;
3449 }
3450 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3451 
3452 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3453                                        struct gfn_to_hva_cache *ghc,
3454                                        gpa_t gpa, unsigned long len)
3455 {
3456         int offset = offset_in_page(gpa);
3457         gfn_t start_gfn = gpa >> PAGE_SHIFT;
3458         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3459         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3460         gfn_t nr_pages_avail;
3461 
3462         /* Update ghc->generation before performing any error checks. */
3463         ghc->generation = slots->generation;
3464 
3465         if (start_gfn > end_gfn) {
3466                 ghc->hva = KVM_HVA_ERR_BAD;
3467                 return -EINVAL;
3468         }
3469 
3470         /*
3471          * If the requested region crosses two memslots, we still
3472          * verify that the entire region is valid here.
3473          */
3474         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3475                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3476                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3477                                            &nr_pages_avail);
3478                 if (kvm_is_error_hva(ghc->hva))
3479                         return -EFAULT;
3480         }
3481 
3482         /* Use the slow path for cross page reads and writes. */
3483         if (nr_pages_needed == 1)
3484                 ghc->hva += offset;
3485         else
3486                 ghc->memslot = NULL;
3487 
3488         ghc->gpa = gpa;
3489         ghc->len = len;
3490         return 0;
3491 }
3492 
3493 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3494                               gpa_t gpa, unsigned long len)
3495 {
3496         struct kvm_memslots *slots = kvm_memslots(kvm);
3497         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3498 }
3499 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3500 
3501 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3502                                   void *data, unsigned int offset,
3503                                   unsigned long len)
3504 {
3505         struct kvm_memslots *slots = kvm_memslots(kvm);
3506         int r;
3507         gpa_t gpa = ghc->gpa + offset;
3508 
3509         if (WARN_ON_ONCE(len + offset > ghc->len))
3510                 return -EINVAL;
3511 
3512         if (slots->generation != ghc->generation) {
3513                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3514                         return -EFAULT;
3515         }
3516 
3517         if (kvm_is_error_hva(ghc->hva))
3518                 return -EFAULT;
3519 
3520         if (unlikely(!ghc->memslot))
3521                 return kvm_write_guest(kvm, gpa, data, len);
3522 
3523         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3524         if (r)
3525                 return -EFAULT;
3526         mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3527 
3528         return 0;
3529 }
3530 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3531 
3532 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3533                            void *data, unsigned long len)
3534 {
3535         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3536 }
3537 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3538 
3539 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3540                                  void *data, unsigned int offset,
3541                                  unsigned long len)
3542 {
3543         struct kvm_memslots *slots = kvm_memslots(kvm);
3544         int r;
3545         gpa_t gpa = ghc->gpa + offset;
3546 
3547         if (WARN_ON_ONCE(len + offset > ghc->len))
3548                 return -EINVAL;
3549 
3550         if (slots->generation != ghc->generation) {
3551                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3552                         return -EFAULT;
3553         }
3554 
3555         if (kvm_is_error_hva(ghc->hva))
3556                 return -EFAULT;
3557 
3558         if (unlikely(!ghc->memslot))
3559                 return kvm_read_guest(kvm, gpa, data, len);
3560 
3561         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3562         if (r)
3563                 return -EFAULT;
3564 
3565         return 0;
3566 }
3567 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3568 
3569 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3570                           void *data, unsigned long len)
3571 {
3572         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3573 }
3574 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3575 
3576 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3577 {
3578         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3579         gfn_t gfn = gpa >> PAGE_SHIFT;
3580         int seg;
3581         int offset = offset_in_page(gpa);
3582         int ret;
3583 
3584         while ((seg = next_segment(len, offset)) != 0) {
3585                 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3586                 if (ret < 0)
3587                         return ret;
3588                 offset = 0;
3589                 len -= seg;
3590                 ++gfn;
3591         }
3592         return 0;
3593 }
3594 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3595 
3596 void mark_page_dirty_in_slot(struct kvm *kvm,
3597                              const struct kvm_memory_slot *memslot,
3598                              gfn_t gfn)
3599 {
3600         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3601 
3602 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3603         if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3604                 return;
3605 
3606         WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3607 #endif
3608 
3609         if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3610                 unsigned long rel_gfn = gfn - memslot->base_gfn;
3611                 u32 slot = (memslot->as_id << 16) | memslot->id;
3612 
3613                 if (kvm->dirty_ring_size && vcpu)
3614                         kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3615                 else if (memslot->dirty_bitmap)
3616                         set_bit_le(rel_gfn, memslot->dirty_bitmap);
3617         }
3618 }
3619 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3620 
3621 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3622 {
3623         struct kvm_memory_slot *memslot;
3624 
3625         memslot = gfn_to_memslot(kvm, gfn);
3626         mark_page_dirty_in_slot(kvm, memslot, gfn);
3627 }
3628 EXPORT_SYMBOL_GPL(mark_page_dirty);
3629 
3630 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3631 {
3632         struct kvm_memory_slot *memslot;
3633 
3634         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3635         mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3636 }
3637 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3638 
3639 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3640 {
3641         if (!vcpu->sigset_active)
3642                 return;
3643 
3644         /*
3645          * This does a lockless modification of ->real_blocked, which is fine
3646          * because, only current can change ->real_blocked and all readers of
3647          * ->real_blocked don't care as long ->real_blocked is always a subset
3648          * of ->blocked.
3649          */
3650         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3651 }
3652 
3653 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3654 {
3655         if (!vcpu->sigset_active)
3656                 return;
3657 
3658         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3659         sigemptyset(&current->real_blocked);
3660 }
3661 
3662 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3663 {
3664         unsigned int old, val, grow, grow_start;
3665 
3666         old = val = vcpu->halt_poll_ns;
3667         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3668         grow = READ_ONCE(halt_poll_ns_grow);
3669         if (!grow)
3670                 goto out;
3671 
3672         val *= grow;
3673         if (val < grow_start)
3674                 val = grow_start;
3675 
3676         vcpu->halt_poll_ns = val;
3677 out:
3678         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3679 }
3680 
3681 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3682 {
3683         unsigned int old, val, shrink, grow_start;
3684 
3685         old = val = vcpu->halt_poll_ns;
3686         shrink = READ_ONCE(halt_poll_ns_shrink);
3687         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3688         if (shrink == 0)
3689                 val = 0;
3690         else
3691                 val /= shrink;
3692 
3693         if (val < grow_start)
3694                 val = 0;
3695 
3696         vcpu->halt_poll_ns = val;
3697         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3698 }
3699 
3700 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3701 {
3702         int ret = -EINTR;
3703         int idx = srcu_read_lock(&vcpu->kvm->srcu);
3704 
3705         if (kvm_arch_vcpu_runnable(vcpu))
3706                 goto out;
3707         if (kvm_cpu_has_pending_timer(vcpu))
3708                 goto out;
3709         if (signal_pending(current))
3710                 goto out;
3711         if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3712                 goto out;
3713 
3714         ret = 0;
3715 out:
3716         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3717         return ret;
3718 }
3719 
3720 /*
3721  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3722  * pending.  This is mostly used when halting a vCPU, but may also be used
3723  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3724  */
3725 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3726 {
3727         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3728         bool waited = false;
3729 
3730         vcpu->stat.generic.blocking = 1;
3731 
3732         preempt_disable();
3733         kvm_arch_vcpu_blocking(vcpu);
3734         prepare_to_rcuwait(wait);
3735         preempt_enable();
3736 
3737         for (;;) {
3738                 set_current_state(TASK_INTERRUPTIBLE);
3739 
3740                 if (kvm_vcpu_check_block(vcpu) < 0)
3741                         break;
3742 
3743                 waited = true;
3744                 schedule();
3745         }
3746 
3747         preempt_disable();
3748         finish_rcuwait(wait);
3749         kvm_arch_vcpu_unblocking(vcpu);
3750         preempt_enable();
3751 
3752         vcpu->stat.generic.blocking = 0;
3753 
3754         return waited;
3755 }
3756 
3757 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3758                                           ktime_t end, bool success)
3759 {
3760         struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3761         u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3762 
3763         ++vcpu->stat.generic.halt_attempted_poll;
3764 
3765         if (success) {
3766                 ++vcpu->stat.generic.halt_successful_poll;
3767 
3768                 if (!vcpu_valid_wakeup(vcpu))
3769                         ++vcpu->stat.generic.halt_poll_invalid;
3770 
3771                 stats->halt_poll_success_ns += poll_ns;
3772                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3773         } else {
3774                 stats->halt_poll_fail_ns += poll_ns;
3775                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3776         }
3777 }
3778 
3779 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3780 {
3781         struct kvm *kvm = vcpu->kvm;
3782 
3783         if (kvm->override_halt_poll_ns) {
3784                 /*
3785                  * Ensure kvm->max_halt_poll_ns is not read before
3786                  * kvm->override_halt_poll_ns.
3787                  *
3788                  * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3789                  */
3790                 smp_rmb();
3791                 return READ_ONCE(kvm->max_halt_poll_ns);
3792         }
3793 
3794         return READ_ONCE(halt_poll_ns);
3795 }
3796 
3797 /*
3798  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3799  * polling is enabled, busy wait for a short time before blocking to avoid the
3800  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3801  * is halted.
3802  */
3803 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3804 {
3805         unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3806         bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3807         ktime_t start, cur, poll_end;
3808         bool waited = false;
3809         bool do_halt_poll;
3810         u64 halt_ns;
3811 
3812         if (vcpu->halt_poll_ns > max_halt_poll_ns)
3813                 vcpu->halt_poll_ns = max_halt_poll_ns;
3814 
3815         do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3816 
3817         start = cur = poll_end = ktime_get();
3818         if (do_halt_poll) {
3819                 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3820 
3821                 do {
3822                         if (kvm_vcpu_check_block(vcpu) < 0)
3823                                 goto out;
3824                         cpu_relax();
3825                         poll_end = cur = ktime_get();
3826                 } while (kvm_vcpu_can_poll(cur, stop));
3827         }
3828 
3829         waited = kvm_vcpu_block(vcpu);
3830 
3831         cur = ktime_get();
3832         if (waited) {
3833                 vcpu->stat.generic.halt_wait_ns +=
3834                         ktime_to_ns(cur) - ktime_to_ns(poll_end);
3835                 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3836                                 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3837         }
3838 out:
3839         /* The total time the vCPU was "halted", including polling time. */
3840         halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3841 
3842         /*
3843          * Note, halt-polling is considered successful so long as the vCPU was
3844          * never actually scheduled out, i.e. even if the wake event arrived
3845          * after of the halt-polling loop itself, but before the full wait.
3846          */
3847         if (do_halt_poll)
3848                 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3849 
3850         if (halt_poll_allowed) {
3851                 /* Recompute the max halt poll time in case it changed. */
3852                 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3853 
3854                 if (!vcpu_valid_wakeup(vcpu)) {
3855                         shrink_halt_poll_ns(vcpu);
3856                 } else if (max_halt_poll_ns) {
3857                         if (halt_ns <= vcpu->halt_poll_ns)
3858                                 ;
3859                         /* we had a long block, shrink polling */
3860                         else if (vcpu->halt_poll_ns &&
3861                                  halt_ns > max_halt_poll_ns)
3862                                 shrink_halt_poll_ns(vcpu);
3863                         /* we had a short halt and our poll time is too small */
3864                         else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3865                                  halt_ns < max_halt_poll_ns)
3866                                 grow_halt_poll_ns(vcpu);
3867                 } else {
3868                         vcpu->halt_poll_ns = 0;
3869                 }
3870         }
3871 
3872         trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3873 }
3874 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3875 
3876 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3877 {
3878         if (__kvm_vcpu_wake_up(vcpu)) {
3879                 WRITE_ONCE(vcpu->ready, true);
3880                 ++vcpu->stat.generic.halt_wakeup;
3881                 return true;
3882         }
3883 
3884         return false;
3885 }
3886 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3887 
3888 #ifndef CONFIG_S390
3889 /*
3890  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3891  */
3892 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3893 {
3894         int me, cpu;
3895 
3896         if (kvm_vcpu_wake_up(vcpu))
3897                 return;
3898 
3899         me = get_cpu();
3900         /*
3901          * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3902          * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3903          * kick" check does not need atomic operations if kvm_vcpu_kick is used
3904          * within the vCPU thread itself.
3905          */
3906         if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3907                 if (vcpu->mode == IN_GUEST_MODE)
3908                         WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3909                 goto out;
3910         }
3911 
3912         /*
3913          * Note, the vCPU could get migrated to a different pCPU at any point
3914          * after kvm_arch_vcpu_should_kick(), which could result in sending an
3915          * IPI to the previous pCPU.  But, that's ok because the purpose of the
3916          * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3917          * vCPU also requires it to leave IN_GUEST_MODE.
3918          */
3919         if (kvm_arch_vcpu_should_kick(vcpu)) {
3920                 cpu = READ_ONCE(vcpu->cpu);
3921                 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3922                         smp_send_reschedule(cpu);
3923         }
3924 out:
3925         put_cpu();
3926 }
3927 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3928 #endif /* !CONFIG_S390 */
3929 
3930 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3931 {
3932         struct pid *pid;
3933         struct task_struct *task = NULL;
3934         int ret = 0;
3935 
3936         rcu_read_lock();
3937         pid = rcu_dereference(target->pid);
3938         if (pid)
3939                 task = get_pid_task(pid, PIDTYPE_PID);
3940         rcu_read_unlock();
3941         if (!task)
3942                 return ret;
3943         ret = yield_to(task, 1);
3944         put_task_struct(task);
3945 
3946         return ret;
3947 }
3948 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3949 
3950 /*
3951  * Helper that checks whether a VCPU is eligible for directed yield.
3952  * Most eligible candidate to yield is decided by following heuristics:
3953  *
3954  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3955  *  (preempted lock holder), indicated by @in_spin_loop.
3956  *  Set at the beginning and cleared at the end of interception/PLE handler.
3957  *
3958  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3959  *  chance last time (mostly it has become eligible now since we have probably
3960  *  yielded to lockholder in last iteration. This is done by toggling
3961  *  @dy_eligible each time a VCPU checked for eligibility.)
3962  *
3963  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3964  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3965  *  burning. Giving priority for a potential lock-holder increases lock
3966  *  progress.
3967  *
3968  *  Since algorithm is based on heuristics, accessing another VCPU data without
3969  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3970  *  and continue with next VCPU and so on.
3971  */
3972 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3973 {
3974 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3975         bool eligible;
3976 
3977         eligible = !vcpu->spin_loop.in_spin_loop ||
3978                     vcpu->spin_loop.dy_eligible;
3979 
3980         if (vcpu->spin_loop.in_spin_loop)
3981                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3982 
3983         return eligible;
3984 #else
3985         return true;
3986 #endif
3987 }
3988 
3989 /*
3990  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3991  * a vcpu_load/vcpu_put pair.  However, for most architectures
3992  * kvm_arch_vcpu_runnable does not require vcpu_load.
3993  */
3994 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3995 {
3996         return kvm_arch_vcpu_runnable(vcpu);
3997 }
3998 
3999 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
4000 {
4001         if (kvm_arch_dy_runnable(vcpu))
4002                 return true;
4003 
4004 #ifdef CONFIG_KVM_ASYNC_PF
4005         if (!list_empty_careful(&vcpu->async_pf.done))
4006                 return true;
4007 #endif
4008 
4009         return false;
4010 }
4011 
4012 /*
4013  * By default, simply query the target vCPU's current mode when checking if a
4014  * vCPU was preempted in kernel mode.  All architectures except x86 (or more
4015  * specifical, except VMX) allow querying whether or not a vCPU is in kernel
4016  * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel()
4017  * directly for cross-vCPU checks is functionally correct and accurate.
4018  */
4019 bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
4020 {
4021         return kvm_arch_vcpu_in_kernel(vcpu);
4022 }
4023 
4024 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
4025 {
4026         return false;
4027 }
4028 
4029 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
4030 {
4031         struct kvm *kvm = me->kvm;
4032         struct kvm_vcpu *vcpu;
4033         int last_boosted_vcpu;
4034         unsigned long i;
4035         int yielded = 0;
4036         int try = 3;
4037         int pass;
4038 
4039         last_boosted_vcpu = READ_ONCE(kvm->last_boosted_vcpu);
4040         kvm_vcpu_set_in_spin_loop(me, true);
4041         /*
4042          * We boost the priority of a VCPU that is runnable but not
4043          * currently running, because it got preempted by something
4044          * else and called schedule in __vcpu_run.  Hopefully that
4045          * VCPU is holding the lock that we need and will release it.
4046          * We approximate round-robin by starting at the last boosted VCPU.
4047          */
4048         for (pass = 0; pass < 2 && !yielded && try; pass++) {
4049                 kvm_for_each_vcpu(i, vcpu, kvm) {
4050                         if (!pass && i <= last_boosted_vcpu) {
4051                                 i = last_boosted_vcpu;
4052                                 continue;
4053                         } else if (pass && i > last_boosted_vcpu)
4054                                 break;
4055                         if (!READ_ONCE(vcpu->ready))
4056                                 continue;
4057                         if (vcpu == me)
4058                                 continue;
4059                         if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
4060                                 continue;
4061 
4062                         /*
4063                          * Treat the target vCPU as being in-kernel if it has a
4064                          * pending interrupt, as the vCPU trying to yield may
4065                          * be spinning waiting on IPI delivery, i.e. the target
4066                          * vCPU is in-kernel for the purposes of directed yield.
4067                          */
4068                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
4069                             !kvm_arch_dy_has_pending_interrupt(vcpu) &&
4070                             !kvm_arch_vcpu_preempted_in_kernel(vcpu))
4071                                 continue;
4072                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
4073                                 continue;
4074 
4075                         yielded = kvm_vcpu_yield_to(vcpu);
4076                         if (yielded > 0) {
4077                                 WRITE_ONCE(kvm->last_boosted_vcpu, i);
4078                                 break;
4079                         } else if (yielded < 0) {
4080                                 try--;
4081                                 if (!try)
4082                                         break;
4083                         }
4084                 }
4085         }
4086         kvm_vcpu_set_in_spin_loop(me, false);
4087 
4088         /* Ensure vcpu is not eligible during next spinloop */
4089         kvm_vcpu_set_dy_eligible(me, false);
4090 }
4091 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
4092 
4093 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
4094 {
4095 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4096         return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
4097             (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
4098              kvm->dirty_ring_size / PAGE_SIZE);
4099 #else
4100         return false;
4101 #endif
4102 }
4103 
4104 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
4105 {
4106         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
4107         struct page *page;
4108 
4109         if (vmf->pgoff == 0)
4110                 page = virt_to_page(vcpu->run);
4111 #ifdef CONFIG_X86
4112         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
4113                 page = virt_to_page(vcpu->arch.pio_data);
4114 #endif
4115 #ifdef CONFIG_KVM_MMIO
4116         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
4117                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
4118 #endif
4119         else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
4120                 page = kvm_dirty_ring_get_page(
4121                     &vcpu->dirty_ring,
4122                     vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
4123         else
4124                 return kvm_arch_vcpu_fault(vcpu, vmf);
4125         get_page(page);
4126         vmf->page = page;
4127         return 0;
4128 }
4129 
4130 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
4131         .fault = kvm_vcpu_fault,
4132 };
4133 
4134 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
4135 {
4136         struct kvm_vcpu *vcpu = file->private_data;
4137         unsigned long pages = vma_pages(vma);
4138 
4139         if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
4140              kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
4141             ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
4142                 return -EINVAL;
4143 
4144         vma->vm_ops = &kvm_vcpu_vm_ops;
4145         return 0;
4146 }
4147 
4148 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
4149 {
4150         struct kvm_vcpu *vcpu = filp->private_data;
4151 
4152         kvm_put_kvm(vcpu->kvm);
4153         return 0;
4154 }
4155 
4156 static struct file_operations kvm_vcpu_fops = {
4157         .release        = kvm_vcpu_release,
4158         .unlocked_ioctl = kvm_vcpu_ioctl,
4159         .mmap           = kvm_vcpu_mmap,
4160         .llseek         = noop_llseek,
4161         KVM_COMPAT(kvm_vcpu_compat_ioctl),
4162 };
4163 
4164 /*
4165  * Allocates an inode for the vcpu.
4166  */
4167 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
4168 {
4169         char name[8 + 1 + ITOA_MAX_LEN + 1];
4170 
4171         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
4172         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
4173 }
4174 
4175 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
4176 static int vcpu_get_pid(void *data, u64 *val)
4177 {
4178         struct kvm_vcpu *vcpu = data;
4179 
4180         rcu_read_lock();
4181         *val = pid_nr(rcu_dereference(vcpu->pid));
4182         rcu_read_unlock();
4183         return 0;
4184 }
4185 
4186 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
4187 
4188 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
4189 {
4190         struct dentry *debugfs_dentry;
4191         char dir_name[ITOA_MAX_LEN * 2];
4192 
4193         if (!debugfs_initialized())
4194                 return;
4195 
4196         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
4197         debugfs_dentry = debugfs_create_dir(dir_name,
4198                                             vcpu->kvm->debugfs_dentry);
4199         debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
4200                             &vcpu_get_pid_fops);
4201 
4202         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
4203 }
4204 #endif
4205 
4206 /*
4207  * Creates some virtual cpus.  Good luck creating more than one.
4208  */
4209 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, unsigned long id)
4210 {
4211         int r;
4212         struct kvm_vcpu *vcpu;
4213         struct page *page;
4214 
4215         /*
4216          * KVM tracks vCPU IDs as 'int', be kind to userspace and reject
4217          * too-large values instead of silently truncating.
4218          *
4219          * Ensure KVM_MAX_VCPU_IDS isn't pushed above INT_MAX without first
4220          * changing the storage type (at the very least, IDs should be tracked
4221          * as unsigned ints).
4222          */
4223         BUILD_BUG_ON(KVM_MAX_VCPU_IDS > INT_MAX);
4224         if (id >= KVM_MAX_VCPU_IDS)
4225                 return -EINVAL;
4226 
4227         mutex_lock(&kvm->lock);
4228         if (kvm->created_vcpus >= kvm->max_vcpus) {
4229                 mutex_unlock(&kvm->lock);
4230                 return -EINVAL;
4231         }
4232 
4233         r = kvm_arch_vcpu_precreate(kvm, id);
4234         if (r) {
4235                 mutex_unlock(&kvm->lock);
4236                 return r;
4237         }
4238 
4239         kvm->created_vcpus++;
4240         mutex_unlock(&kvm->lock);
4241 
4242         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
4243         if (!vcpu) {
4244                 r = -ENOMEM;
4245                 goto vcpu_decrement;
4246         }
4247 
4248         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
4249         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
4250         if (!page) {
4251                 r = -ENOMEM;
4252                 goto vcpu_free;
4253         }
4254         vcpu->run = page_address(page);
4255 
4256         kvm_vcpu_init(vcpu, kvm, id);
4257 
4258         r = kvm_arch_vcpu_create(vcpu);
4259         if (r)
4260                 goto vcpu_free_run_page;
4261 
4262         if (kvm->dirty_ring_size) {
4263                 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
4264                                          id, kvm->dirty_ring_size);
4265                 if (r)
4266                         goto arch_vcpu_destroy;
4267         }
4268 
4269         mutex_lock(&kvm->lock);
4270 
4271 #ifdef CONFIG_LOCKDEP
4272         /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
4273         mutex_lock(&vcpu->mutex);
4274         mutex_unlock(&vcpu->mutex);
4275 #endif
4276 
4277         if (kvm_get_vcpu_by_id(kvm, id)) {
4278                 r = -EEXIST;
4279                 goto unlock_vcpu_destroy;
4280         }
4281 
4282         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4283         r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
4284         if (r)
4285                 goto unlock_vcpu_destroy;
4286 
4287         /* Now it's all set up, let userspace reach it */
4288         kvm_get_kvm(kvm);
4289         r = create_vcpu_fd(vcpu);
4290         if (r < 0)
4291                 goto kvm_put_xa_release;
4292 
4293         if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
4294                 r = -EINVAL;
4295                 goto kvm_put_xa_release;
4296         }
4297 
4298         /*
4299          * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
4300          * pointer before kvm->online_vcpu's incremented value.
4301          */
4302         smp_wmb();
4303         atomic_inc(&kvm->online_vcpus);
4304 
4305         mutex_unlock(&kvm->lock);
4306         kvm_arch_vcpu_postcreate(vcpu);
4307         kvm_create_vcpu_debugfs(vcpu);
4308         return r;
4309 
4310 kvm_put_xa_release:
4311         kvm_put_kvm_no_destroy(kvm);
4312         xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4313 unlock_vcpu_destroy:
4314         mutex_unlock(&kvm->lock);
4315         kvm_dirty_ring_free(&vcpu->dirty_ring);
4316 arch_vcpu_destroy:
4317         kvm_arch_vcpu_destroy(vcpu);
4318 vcpu_free_run_page:
4319         free_page((unsigned long)vcpu->run);
4320 vcpu_free:
4321         kmem_cache_free(kvm_vcpu_cache, vcpu);
4322 vcpu_decrement:
4323         mutex_lock(&kvm->lock);
4324         kvm->created_vcpus--;
4325         mutex_unlock(&kvm->lock);
4326         return r;
4327 }
4328 
4329 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4330 {
4331         if (sigset) {
4332                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4333                 vcpu->sigset_active = 1;
4334                 vcpu->sigset = *sigset;
4335         } else
4336                 vcpu->sigset_active = 0;
4337         return 0;
4338 }
4339 
4340 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4341                               size_t size, loff_t *offset)
4342 {
4343         struct kvm_vcpu *vcpu = file->private_data;
4344 
4345         return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4346                         &kvm_vcpu_stats_desc[0], &vcpu->stat,
4347                         sizeof(vcpu->stat), user_buffer, size, offset);
4348 }
4349 
4350 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4351 {
4352         struct kvm_vcpu *vcpu = file->private_data;
4353 
4354         kvm_put_kvm(vcpu->kvm);
4355         return 0;
4356 }
4357 
4358 static const struct file_operations kvm_vcpu_stats_fops = {
4359         .owner = THIS_MODULE,
4360         .read = kvm_vcpu_stats_read,
4361         .release = kvm_vcpu_stats_release,
4362         .llseek = noop_llseek,
4363 };
4364 
4365 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4366 {
4367         int fd;
4368         struct file *file;
4369         char name[15 + ITOA_MAX_LEN + 1];
4370 
4371         snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4372 
4373         fd = get_unused_fd_flags(O_CLOEXEC);
4374         if (fd < 0)
4375                 return fd;
4376 
4377         file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4378         if (IS_ERR(file)) {
4379                 put_unused_fd(fd);
4380                 return PTR_ERR(file);
4381         }
4382 
4383         kvm_get_kvm(vcpu->kvm);
4384 
4385         file->f_mode |= FMODE_PREAD;
4386         fd_install(fd, file);
4387 
4388         return fd;
4389 }
4390 
4391 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
4392 static int kvm_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
4393                                      struct kvm_pre_fault_memory *range)
4394 {
4395         int idx;
4396         long r;
4397         u64 full_size;
4398 
4399         if (range->flags)
4400                 return -EINVAL;
4401 
4402         if (!PAGE_ALIGNED(range->gpa) ||
4403             !PAGE_ALIGNED(range->size) ||
4404             range->gpa + range->size <= range->gpa)
4405                 return -EINVAL;
4406 
4407         vcpu_load(vcpu);
4408         idx = srcu_read_lock(&vcpu->kvm->srcu);
4409 
4410         full_size = range->size;
4411         do {
4412                 if (signal_pending(current)) {
4413                         r = -EINTR;
4414                         break;
4415                 }
4416 
4417                 r = kvm_arch_vcpu_pre_fault_memory(vcpu, range);
4418                 if (WARN_ON_ONCE(r == 0 || r == -EIO))
4419                         break;
4420 
4421                 if (r < 0)
4422                         break;
4423 
4424                 range->size -= r;
4425                 range->gpa += r;
4426                 cond_resched();
4427         } while (range->size);
4428 
4429         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4430         vcpu_put(vcpu);
4431 
4432         /* Return success if at least one page was mapped successfully.  */
4433         return full_size == range->size ? r : 0;
4434 }
4435 #endif
4436 
4437 static long kvm_vcpu_ioctl(struct file *filp,
4438                            unsigned int ioctl, unsigned long arg)
4439 {
4440         struct kvm_vcpu *vcpu = filp->private_data;
4441         void __user *argp = (void __user *)arg;
4442         int r;
4443         struct kvm_fpu *fpu = NULL;
4444         struct kvm_sregs *kvm_sregs = NULL;
4445 
4446         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4447                 return -EIO;
4448 
4449         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4450                 return -EINVAL;
4451 
4452         /*
4453          * Some architectures have vcpu ioctls that are asynchronous to vcpu
4454          * execution; mutex_lock() would break them.
4455          */
4456         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4457         if (r != -ENOIOCTLCMD)
4458                 return r;
4459 
4460         if (mutex_lock_killable(&vcpu->mutex))
4461                 return -EINTR;
4462         switch (ioctl) {
4463         case KVM_RUN: {
4464                 struct pid *oldpid;
4465                 r = -EINVAL;
4466                 if (arg)
4467                         goto out;
4468                 oldpid = rcu_access_pointer(vcpu->pid);
4469                 if (unlikely(oldpid != task_pid(current))) {
4470                         /* The thread running this VCPU changed. */
4471                         struct pid *newpid;
4472 
4473                         r = kvm_arch_vcpu_run_pid_change(vcpu);
4474                         if (r)
4475                                 break;
4476 
4477                         newpid = get_task_pid(current, PIDTYPE_PID);
4478                         rcu_assign_pointer(vcpu->pid, newpid);
4479                         if (oldpid)
4480                                 synchronize_rcu();
4481                         put_pid(oldpid);
4482                 }
4483                 vcpu->wants_to_run = !READ_ONCE(vcpu->run->immediate_exit__unsafe);
4484                 r = kvm_arch_vcpu_ioctl_run(vcpu);
4485                 vcpu->wants_to_run = false;
4486 
4487                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4488                 break;
4489         }
4490         case KVM_GET_REGS: {
4491                 struct kvm_regs *kvm_regs;
4492 
4493                 r = -ENOMEM;
4494                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
4495                 if (!kvm_regs)
4496                         goto out;
4497                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4498                 if (r)
4499                         goto out_free1;
4500                 r = -EFAULT;
4501                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4502                         goto out_free1;
4503                 r = 0;
4504 out_free1:
4505                 kfree(kvm_regs);
4506                 break;
4507         }
4508         case KVM_SET_REGS: {
4509                 struct kvm_regs *kvm_regs;
4510 
4511                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4512                 if (IS_ERR(kvm_regs)) {
4513                         r = PTR_ERR(kvm_regs);
4514                         goto out;
4515                 }
4516                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4517                 kfree(kvm_regs);
4518                 break;
4519         }
4520         case KVM_GET_SREGS: {
4521                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
4522                 r = -ENOMEM;
4523                 if (!kvm_sregs)
4524                         goto out;
4525                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4526                 if (r)
4527                         goto out;
4528                 r = -EFAULT;
4529                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4530                         goto out;
4531                 r = 0;
4532                 break;
4533         }
4534         case KVM_SET_SREGS: {
4535                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4536                 if (IS_ERR(kvm_sregs)) {
4537                         r = PTR_ERR(kvm_sregs);
4538                         kvm_sregs = NULL;
4539                         goto out;
4540                 }
4541                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4542                 break;
4543         }
4544         case KVM_GET_MP_STATE: {
4545                 struct kvm_mp_state mp_state;
4546 
4547                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4548                 if (r)
4549                         goto out;
4550                 r = -EFAULT;
4551                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4552                         goto out;
4553                 r = 0;
4554                 break;
4555         }
4556         case KVM_SET_MP_STATE: {
4557                 struct kvm_mp_state mp_state;
4558 
4559                 r = -EFAULT;
4560                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4561                         goto out;
4562                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4563                 break;
4564         }
4565         case KVM_TRANSLATE: {
4566                 struct kvm_translation tr;
4567 
4568                 r = -EFAULT;
4569                 if (copy_from_user(&tr, argp, sizeof(tr)))
4570                         goto out;
4571                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4572                 if (r)
4573                         goto out;
4574                 r = -EFAULT;
4575                 if (copy_to_user(argp, &tr, sizeof(tr)))
4576                         goto out;
4577                 r = 0;
4578                 break;
4579         }
4580         case KVM_SET_GUEST_DEBUG: {
4581                 struct kvm_guest_debug dbg;
4582 
4583                 r = -EFAULT;
4584                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4585                         goto out;
4586                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4587                 break;
4588         }
4589         case KVM_SET_SIGNAL_MASK: {
4590                 struct kvm_signal_mask __user *sigmask_arg = argp;
4591                 struct kvm_signal_mask kvm_sigmask;
4592                 sigset_t sigset, *p;
4593 
4594                 p = NULL;
4595                 if (argp) {
4596                         r = -EFAULT;
4597                         if (copy_from_user(&kvm_sigmask, argp,
4598                                            sizeof(kvm_sigmask)))
4599                                 goto out;
4600                         r = -EINVAL;
4601                         if (kvm_sigmask.len != sizeof(sigset))
4602                                 goto out;
4603                         r = -EFAULT;
4604                         if (copy_from_user(&sigset, sigmask_arg->sigset,
4605                                            sizeof(sigset)))
4606                                 goto out;
4607                         p = &sigset;
4608                 }
4609                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4610                 break;
4611         }
4612         case KVM_GET_FPU: {
4613                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
4614                 r = -ENOMEM;
4615                 if (!fpu)
4616                         goto out;
4617                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4618                 if (r)
4619                         goto out;
4620                 r = -EFAULT;
4621                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4622                         goto out;
4623                 r = 0;
4624                 break;
4625         }
4626         case KVM_SET_FPU: {
4627                 fpu = memdup_user(argp, sizeof(*fpu));
4628                 if (IS_ERR(fpu)) {
4629                         r = PTR_ERR(fpu);
4630                         fpu = NULL;
4631                         goto out;
4632                 }
4633                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4634                 break;
4635         }
4636         case KVM_GET_STATS_FD: {
4637                 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4638                 break;
4639         }
4640 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
4641         case KVM_PRE_FAULT_MEMORY: {
4642                 struct kvm_pre_fault_memory range;
4643 
4644                 r = -EFAULT;
4645                 if (copy_from_user(&range, argp, sizeof(range)))
4646                         break;
4647                 r = kvm_vcpu_pre_fault_memory(vcpu, &range);
4648                 /* Pass back leftover range. */
4649                 if (copy_to_user(argp, &range, sizeof(range)))
4650                         r = -EFAULT;
4651                 break;
4652         }
4653 #endif
4654         default:
4655                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4656         }
4657 out:
4658         mutex_unlock(&vcpu->mutex);
4659         kfree(fpu);
4660         kfree(kvm_sregs);
4661         return r;
4662 }
4663 
4664 #ifdef CONFIG_KVM_COMPAT
4665 static long kvm_vcpu_compat_ioctl(struct file *filp,
4666                                   unsigned int ioctl, unsigned long arg)
4667 {
4668         struct kvm_vcpu *vcpu = filp->private_data;
4669         void __user *argp = compat_ptr(arg);
4670         int r;
4671 
4672         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4673                 return -EIO;
4674 
4675         switch (ioctl) {
4676         case KVM_SET_SIGNAL_MASK: {
4677                 struct kvm_signal_mask __user *sigmask_arg = argp;
4678                 struct kvm_signal_mask kvm_sigmask;
4679                 sigset_t sigset;
4680 
4681                 if (argp) {
4682                         r = -EFAULT;
4683                         if (copy_from_user(&kvm_sigmask, argp,
4684                                            sizeof(kvm_sigmask)))
4685                                 goto out;
4686                         r = -EINVAL;
4687                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
4688                                 goto out;
4689                         r = -EFAULT;
4690                         if (get_compat_sigset(&sigset,
4691                                               (compat_sigset_t __user *)sigmask_arg->sigset))
4692                                 goto out;
4693                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4694                 } else
4695                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4696                 break;
4697         }
4698         default:
4699                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4700         }
4701 
4702 out:
4703         return r;
4704 }
4705 #endif
4706 
4707 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4708 {
4709         struct kvm_device *dev = filp->private_data;
4710 
4711         if (dev->ops->mmap)
4712                 return dev->ops->mmap(dev, vma);
4713 
4714         return -ENODEV;
4715 }
4716 
4717 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4718                                  int (*accessor)(struct kvm_device *dev,
4719                                                  struct kvm_device_attr *attr),
4720                                  unsigned long arg)
4721 {
4722         struct kvm_device_attr attr;
4723 
4724         if (!accessor)
4725                 return -EPERM;
4726 
4727         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4728                 return -EFAULT;
4729 
4730         return accessor(dev, &attr);
4731 }
4732 
4733 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4734                              unsigned long arg)
4735 {
4736         struct kvm_device *dev = filp->private_data;
4737 
4738         if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4739                 return -EIO;
4740 
4741         switch (ioctl) {
4742         case KVM_SET_DEVICE_ATTR:
4743                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4744         case KVM_GET_DEVICE_ATTR:
4745                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4746         case KVM_HAS_DEVICE_ATTR:
4747                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4748         default:
4749                 if (dev->ops->ioctl)
4750                         return dev->ops->ioctl(dev, ioctl, arg);
4751 
4752                 return -ENOTTY;
4753         }
4754 }
4755 
4756 static int kvm_device_release(struct inode *inode, struct file *filp)
4757 {
4758         struct kvm_device *dev = filp->private_data;
4759         struct kvm *kvm = dev->kvm;
4760 
4761         if (dev->ops->release) {
4762                 mutex_lock(&kvm->lock);
4763                 list_del_rcu(&dev->vm_node);
4764                 synchronize_rcu();
4765                 dev->ops->release(dev);
4766                 mutex_unlock(&kvm->lock);
4767         }
4768 
4769         kvm_put_kvm(kvm);
4770         return 0;
4771 }
4772 
4773 static struct file_operations kvm_device_fops = {
4774         .unlocked_ioctl = kvm_device_ioctl,
4775         .release = kvm_device_release,
4776         KVM_COMPAT(kvm_device_ioctl),
4777         .mmap = kvm_device_mmap,
4778 };
4779 
4780 struct kvm_device *kvm_device_from_filp(struct file *filp)
4781 {
4782         if (filp->f_op != &kvm_device_fops)
4783                 return NULL;
4784 
4785         return filp->private_data;
4786 }
4787 
4788 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4789 #ifdef CONFIG_KVM_MPIC
4790         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
4791         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
4792 #endif
4793 };
4794 
4795 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4796 {
4797         if (type >= ARRAY_SIZE(kvm_device_ops_table))
4798                 return -ENOSPC;
4799 
4800         if (kvm_device_ops_table[type] != NULL)
4801                 return -EEXIST;
4802 
4803         kvm_device_ops_table[type] = ops;
4804         return 0;
4805 }
4806 
4807 void kvm_unregister_device_ops(u32 type)
4808 {
4809         if (kvm_device_ops_table[type] != NULL)
4810                 kvm_device_ops_table[type] = NULL;
4811 }
4812 
4813 static int kvm_ioctl_create_device(struct kvm *kvm,
4814                                    struct kvm_create_device *cd)
4815 {
4816         const struct kvm_device_ops *ops;
4817         struct kvm_device *dev;
4818         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4819         int type;
4820         int ret;
4821 
4822         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4823                 return -ENODEV;
4824 
4825         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4826         ops = kvm_device_ops_table[type];
4827         if (ops == NULL)
4828                 return -ENODEV;
4829 
4830         if (test)
4831                 return 0;
4832 
4833         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4834         if (!dev)
4835                 return -ENOMEM;
4836 
4837         dev->ops = ops;
4838         dev->kvm = kvm;
4839 
4840         mutex_lock(&kvm->lock);
4841         ret = ops->create(dev, type);
4842         if (ret < 0) {
4843                 mutex_unlock(&kvm->lock);
4844                 kfree(dev);
4845                 return ret;
4846         }
4847         list_add_rcu(&dev->vm_node, &kvm->devices);
4848         mutex_unlock(&kvm->lock);
4849 
4850         if (ops->init)
4851                 ops->init(dev);
4852 
4853         kvm_get_kvm(kvm);
4854         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4855         if (ret < 0) {
4856                 kvm_put_kvm_no_destroy(kvm);
4857                 mutex_lock(&kvm->lock);
4858                 list_del_rcu(&dev->vm_node);
4859                 synchronize_rcu();
4860                 if (ops->release)
4861                         ops->release(dev);
4862                 mutex_unlock(&kvm->lock);
4863                 if (ops->destroy)
4864                         ops->destroy(dev);
4865                 return ret;
4866         }
4867 
4868         cd->fd = ret;
4869         return 0;
4870 }
4871 
4872 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4873 {
4874         switch (arg) {
4875         case KVM_CAP_USER_MEMORY:
4876         case KVM_CAP_USER_MEMORY2:
4877         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4878         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4879         case KVM_CAP_INTERNAL_ERROR_DATA:
4880 #ifdef CONFIG_HAVE_KVM_MSI
4881         case KVM_CAP_SIGNAL_MSI:
4882 #endif
4883 #ifdef CONFIG_HAVE_KVM_IRQCHIP
4884         case KVM_CAP_IRQFD:
4885 #endif
4886         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4887         case KVM_CAP_CHECK_EXTENSION_VM:
4888         case KVM_CAP_ENABLE_CAP_VM:
4889         case KVM_CAP_HALT_POLL:
4890                 return 1;
4891 #ifdef CONFIG_KVM_MMIO
4892         case KVM_CAP_COALESCED_MMIO:
4893                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4894         case KVM_CAP_COALESCED_PIO:
4895                 return 1;
4896 #endif
4897 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4898         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4899                 return KVM_DIRTY_LOG_MANUAL_CAPS;
4900 #endif
4901 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4902         case KVM_CAP_IRQ_ROUTING:
4903                 return KVM_MAX_IRQ_ROUTES;
4904 #endif
4905 #if KVM_MAX_NR_ADDRESS_SPACES > 1
4906         case KVM_CAP_MULTI_ADDRESS_SPACE:
4907                 if (kvm)
4908                         return kvm_arch_nr_memslot_as_ids(kvm);
4909                 return KVM_MAX_NR_ADDRESS_SPACES;
4910 #endif
4911         case KVM_CAP_NR_MEMSLOTS:
4912                 return KVM_USER_MEM_SLOTS;
4913         case KVM_CAP_DIRTY_LOG_RING:
4914 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4915                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4916 #else
4917                 return 0;
4918 #endif
4919         case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4920 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4921                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4922 #else
4923                 return 0;
4924 #endif
4925 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4926         case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4927 #endif
4928         case KVM_CAP_BINARY_STATS_FD:
4929         case KVM_CAP_SYSTEM_EVENT_DATA:
4930         case KVM_CAP_DEVICE_CTRL:
4931                 return 1;
4932 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
4933         case KVM_CAP_MEMORY_ATTRIBUTES:
4934                 return kvm_supported_mem_attributes(kvm);
4935 #endif
4936 #ifdef CONFIG_KVM_PRIVATE_MEM
4937         case KVM_CAP_GUEST_MEMFD:
4938                 return !kvm || kvm_arch_has_private_mem(kvm);
4939 #endif
4940         default:
4941                 break;
4942         }
4943         return kvm_vm_ioctl_check_extension(kvm, arg);
4944 }
4945 
4946 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4947 {
4948         int r;
4949 
4950         if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4951                 return -EINVAL;
4952 
4953         /* the size should be power of 2 */
4954         if (!size || (size & (size - 1)))
4955                 return -EINVAL;
4956 
4957         /* Should be bigger to keep the reserved entries, or a page */
4958         if (size < kvm_dirty_ring_get_rsvd_entries() *
4959             sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4960                 return -EINVAL;
4961 
4962         if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4963             sizeof(struct kvm_dirty_gfn))
4964                 return -E2BIG;
4965 
4966         /* We only allow it to set once */
4967         if (kvm->dirty_ring_size)
4968                 return -EINVAL;
4969 
4970         mutex_lock(&kvm->lock);
4971 
4972         if (kvm->created_vcpus) {
4973                 /* We don't allow to change this value after vcpu created */
4974                 r = -EINVAL;
4975         } else {
4976                 kvm->dirty_ring_size = size;
4977                 r = 0;
4978         }
4979 
4980         mutex_unlock(&kvm->lock);
4981         return r;
4982 }
4983 
4984 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4985 {
4986         unsigned long i;
4987         struct kvm_vcpu *vcpu;
4988         int cleared = 0;
4989 
4990         if (!kvm->dirty_ring_size)
4991                 return -EINVAL;
4992 
4993         mutex_lock(&kvm->slots_lock);
4994 
4995         kvm_for_each_vcpu(i, vcpu, kvm)
4996                 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4997 
4998         mutex_unlock(&kvm->slots_lock);
4999 
5000         if (cleared)
5001                 kvm_flush_remote_tlbs(kvm);
5002 
5003         return cleared;
5004 }
5005 
5006 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5007                                                   struct kvm_enable_cap *cap)
5008 {
5009         return -EINVAL;
5010 }
5011 
5012 bool kvm_are_all_memslots_empty(struct kvm *kvm)
5013 {
5014         int i;
5015 
5016         lockdep_assert_held(&kvm->slots_lock);
5017 
5018         for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
5019                 if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
5020                         return false;
5021         }
5022 
5023         return true;
5024 }
5025 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
5026 
5027 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
5028                                            struct kvm_enable_cap *cap)
5029 {
5030         switch (cap->cap) {
5031 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5032         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
5033                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
5034 
5035                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
5036                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
5037 
5038                 if (cap->flags || (cap->args[0] & ~allowed_options))
5039                         return -EINVAL;
5040                 kvm->manual_dirty_log_protect = cap->args[0];
5041                 return 0;
5042         }
5043 #endif
5044         case KVM_CAP_HALT_POLL: {
5045                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
5046                         return -EINVAL;
5047 
5048                 kvm->max_halt_poll_ns = cap->args[0];
5049 
5050                 /*
5051                  * Ensure kvm->override_halt_poll_ns does not become visible
5052                  * before kvm->max_halt_poll_ns.
5053                  *
5054                  * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
5055                  */
5056                 smp_wmb();
5057                 kvm->override_halt_poll_ns = true;
5058 
5059                 return 0;
5060         }
5061         case KVM_CAP_DIRTY_LOG_RING:
5062         case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
5063                 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
5064                         return -EINVAL;
5065 
5066                 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
5067         case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
5068                 int r = -EINVAL;
5069 
5070                 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
5071                     !kvm->dirty_ring_size || cap->flags)
5072                         return r;
5073 
5074                 mutex_lock(&kvm->slots_lock);
5075 
5076                 /*
5077                  * For simplicity, allow enabling ring+bitmap if and only if
5078                  * there are no memslots, e.g. to ensure all memslots allocate
5079                  * a bitmap after the capability is enabled.
5080                  */
5081                 if (kvm_are_all_memslots_empty(kvm)) {
5082                         kvm->dirty_ring_with_bitmap = true;
5083                         r = 0;
5084                 }
5085 
5086                 mutex_unlock(&kvm->slots_lock);
5087 
5088                 return r;
5089         }
5090         default:
5091                 return kvm_vm_ioctl_enable_cap(kvm, cap);
5092         }
5093 }
5094 
5095 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
5096                               size_t size, loff_t *offset)
5097 {
5098         struct kvm *kvm = file->private_data;
5099 
5100         return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
5101                                 &kvm_vm_stats_desc[0], &kvm->stat,
5102                                 sizeof(kvm->stat), user_buffer, size, offset);
5103 }
5104 
5105 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
5106 {
5107         struct kvm *kvm = file->private_data;
5108 
5109         kvm_put_kvm(kvm);
5110         return 0;
5111 }
5112 
5113 static const struct file_operations kvm_vm_stats_fops = {
5114         .owner = THIS_MODULE,
5115         .read = kvm_vm_stats_read,
5116         .release = kvm_vm_stats_release,
5117         .llseek = noop_llseek,
5118 };
5119 
5120 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
5121 {
5122         int fd;
5123         struct file *file;
5124 
5125         fd = get_unused_fd_flags(O_CLOEXEC);
5126         if (fd < 0)
5127                 return fd;
5128 
5129         file = anon_inode_getfile("kvm-vm-stats",
5130                         &kvm_vm_stats_fops, kvm, O_RDONLY);
5131         if (IS_ERR(file)) {
5132                 put_unused_fd(fd);
5133                 return PTR_ERR(file);
5134         }
5135 
5136         kvm_get_kvm(kvm);
5137 
5138         file->f_mode |= FMODE_PREAD;
5139         fd_install(fd, file);
5140 
5141         return fd;
5142 }
5143 
5144 #define SANITY_CHECK_MEM_REGION_FIELD(field)                                    \
5145 do {                                                                            \
5146         BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) !=             \
5147                      offsetof(struct kvm_userspace_memory_region2, field));     \
5148         BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) !=         \
5149                      sizeof_field(struct kvm_userspace_memory_region2, field)); \
5150 } while (0)
5151 
5152 static long kvm_vm_ioctl(struct file *filp,
5153                            unsigned int ioctl, unsigned long arg)
5154 {
5155         struct kvm *kvm = filp->private_data;
5156         void __user *argp = (void __user *)arg;
5157         int r;
5158 
5159         if (kvm->mm != current->mm || kvm->vm_dead)
5160                 return -EIO;
5161         switch (ioctl) {
5162         case KVM_CREATE_VCPU:
5163                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
5164                 break;
5165         case KVM_ENABLE_CAP: {
5166                 struct kvm_enable_cap cap;
5167 
5168                 r = -EFAULT;
5169                 if (copy_from_user(&cap, argp, sizeof(cap)))
5170                         goto out;
5171                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
5172                 break;
5173         }
5174         case KVM_SET_USER_MEMORY_REGION2:
5175         case KVM_SET_USER_MEMORY_REGION: {
5176                 struct kvm_userspace_memory_region2 mem;
5177                 unsigned long size;
5178 
5179                 if (ioctl == KVM_SET_USER_MEMORY_REGION) {
5180                         /*
5181                          * Fields beyond struct kvm_userspace_memory_region shouldn't be
5182                          * accessed, but avoid leaking kernel memory in case of a bug.
5183                          */
5184                         memset(&mem, 0, sizeof(mem));
5185                         size = sizeof(struct kvm_userspace_memory_region);
5186                 } else {
5187                         size = sizeof(struct kvm_userspace_memory_region2);
5188                 }
5189 
5190                 /* Ensure the common parts of the two structs are identical. */
5191                 SANITY_CHECK_MEM_REGION_FIELD(slot);
5192                 SANITY_CHECK_MEM_REGION_FIELD(flags);
5193                 SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
5194                 SANITY_CHECK_MEM_REGION_FIELD(memory_size);
5195                 SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
5196 
5197                 r = -EFAULT;
5198                 if (copy_from_user(&mem, argp, size))
5199                         goto out;
5200 
5201                 r = -EINVAL;
5202                 if (ioctl == KVM_SET_USER_MEMORY_REGION &&
5203                     (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
5204                         goto out;
5205 
5206                 r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
5207                 break;
5208         }
5209         case KVM_GET_DIRTY_LOG: {
5210                 struct kvm_dirty_log log;
5211 
5212                 r = -EFAULT;
5213                 if (copy_from_user(&log, argp, sizeof(log)))
5214                         goto out;
5215                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5216                 break;
5217         }
5218 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5219         case KVM_CLEAR_DIRTY_LOG: {
5220                 struct kvm_clear_dirty_log log;
5221 
5222                 r = -EFAULT;
5223                 if (copy_from_user(&log, argp, sizeof(log)))
5224                         goto out;
5225                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5226                 break;
5227         }
5228 #endif
5229 #ifdef CONFIG_KVM_MMIO
5230         case KVM_REGISTER_COALESCED_MMIO: {
5231                 struct kvm_coalesced_mmio_zone zone;
5232 
5233                 r = -EFAULT;
5234                 if (copy_from_user(&zone, argp, sizeof(zone)))
5235                         goto out;
5236                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5237                 break;
5238         }
5239         case KVM_UNREGISTER_COALESCED_MMIO: {
5240                 struct kvm_coalesced_mmio_zone zone;
5241 
5242                 r = -EFAULT;
5243                 if (copy_from_user(&zone, argp, sizeof(zone)))
5244                         goto out;
5245                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5246                 break;
5247         }
5248 #endif
5249         case KVM_IRQFD: {
5250                 struct kvm_irqfd data;
5251 
5252                 r = -EFAULT;
5253                 if (copy_from_user(&data, argp, sizeof(data)))
5254                         goto out;
5255                 r = kvm_irqfd(kvm, &data);
5256                 break;
5257         }
5258         case KVM_IOEVENTFD: {
5259                 struct kvm_ioeventfd data;
5260 
5261                 r = -EFAULT;
5262                 if (copy_from_user(&data, argp, sizeof(data)))
5263                         goto out;
5264                 r = kvm_ioeventfd(kvm, &data);
5265                 break;
5266         }
5267 #ifdef CONFIG_HAVE_KVM_MSI
5268         case KVM_SIGNAL_MSI: {
5269                 struct kvm_msi msi;
5270 
5271                 r = -EFAULT;
5272                 if (copy_from_user(&msi, argp, sizeof(msi)))
5273                         goto out;
5274                 r = kvm_send_userspace_msi(kvm, &msi);
5275                 break;
5276         }
5277 #endif
5278 #ifdef __KVM_HAVE_IRQ_LINE
5279         case KVM_IRQ_LINE_STATUS:
5280         case KVM_IRQ_LINE: {
5281                 struct kvm_irq_level irq_event;
5282 
5283                 r = -EFAULT;
5284                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
5285                         goto out;
5286 
5287                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
5288                                         ioctl == KVM_IRQ_LINE_STATUS);
5289                 if (r)
5290                         goto out;
5291 
5292                 r = -EFAULT;
5293                 if (ioctl == KVM_IRQ_LINE_STATUS) {
5294                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
5295                                 goto out;
5296                 }
5297 
5298                 r = 0;
5299                 break;
5300         }
5301 #endif
5302 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
5303         case KVM_SET_GSI_ROUTING: {
5304                 struct kvm_irq_routing routing;
5305                 struct kvm_irq_routing __user *urouting;
5306                 struct kvm_irq_routing_entry *entries = NULL;
5307 
5308                 r = -EFAULT;
5309                 if (copy_from_user(&routing, argp, sizeof(routing)))
5310                         goto out;
5311                 r = -EINVAL;
5312                 if (!kvm_arch_can_set_irq_routing(kvm))
5313                         goto out;
5314                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
5315                         goto out;
5316                 if (routing.flags)
5317                         goto out;
5318                 if (routing.nr) {
5319                         urouting = argp;
5320                         entries = vmemdup_array_user(urouting->entries,
5321                                                      routing.nr, sizeof(*entries));
5322                         if (IS_ERR(entries)) {
5323                                 r = PTR_ERR(entries);
5324                                 goto out;
5325                         }
5326                 }
5327                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
5328                                         routing.flags);
5329                 kvfree(entries);
5330                 break;
5331         }
5332 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5333 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
5334         case KVM_SET_MEMORY_ATTRIBUTES: {
5335                 struct kvm_memory_attributes attrs;
5336 
5337                 r = -EFAULT;
5338                 if (copy_from_user(&attrs, argp, sizeof(attrs)))
5339                         goto out;
5340 
5341                 r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
5342                 break;
5343         }
5344 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
5345         case KVM_CREATE_DEVICE: {
5346                 struct kvm_create_device cd;
5347 
5348                 r = -EFAULT;
5349                 if (copy_from_user(&cd, argp, sizeof(cd)))
5350                         goto out;
5351 
5352                 r = kvm_ioctl_create_device(kvm, &cd);
5353                 if (r)
5354                         goto out;
5355 
5356                 r = -EFAULT;
5357                 if (copy_to_user(argp, &cd, sizeof(cd)))
5358                         goto out;
5359 
5360                 r = 0;
5361                 break;
5362         }
5363         case KVM_CHECK_EXTENSION:
5364                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
5365                 break;
5366         case KVM_RESET_DIRTY_RINGS:
5367                 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
5368                 break;
5369         case KVM_GET_STATS_FD:
5370                 r = kvm_vm_ioctl_get_stats_fd(kvm);
5371                 break;
5372 #ifdef CONFIG_KVM_PRIVATE_MEM
5373         case KVM_CREATE_GUEST_MEMFD: {
5374                 struct kvm_create_guest_memfd guest_memfd;
5375 
5376                 r = -EFAULT;
5377                 if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
5378                         goto out;
5379 
5380                 r = kvm_gmem_create(kvm, &guest_memfd);
5381                 break;
5382         }
5383 #endif
5384         default:
5385                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
5386         }
5387 out:
5388         return r;
5389 }
5390 
5391 #ifdef CONFIG_KVM_COMPAT
5392 struct compat_kvm_dirty_log {
5393         __u32 slot;
5394         __u32 padding1;
5395         union {
5396                 compat_uptr_t dirty_bitmap; /* one bit per page */
5397                 __u64 padding2;
5398         };
5399 };
5400 
5401 struct compat_kvm_clear_dirty_log {
5402         __u32 slot;
5403         __u32 num_pages;
5404         __u64 first_page;
5405         union {
5406                 compat_uptr_t dirty_bitmap; /* one bit per page */
5407                 __u64 padding2;
5408         };
5409 };
5410 
5411 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5412                                      unsigned long arg)
5413 {
5414         return -ENOTTY;
5415 }
5416 
5417 static long kvm_vm_compat_ioctl(struct file *filp,
5418                            unsigned int ioctl, unsigned long arg)
5419 {
5420         struct kvm *kvm = filp->private_data;
5421         int r;
5422 
5423         if (kvm->mm != current->mm || kvm->vm_dead)
5424                 return -EIO;
5425 
5426         r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5427         if (r != -ENOTTY)
5428                 return r;
5429 
5430         switch (ioctl) {
5431 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5432         case KVM_CLEAR_DIRTY_LOG: {
5433                 struct compat_kvm_clear_dirty_log compat_log;
5434                 struct kvm_clear_dirty_log log;
5435 
5436                 if (copy_from_user(&compat_log, (void __user *)arg,
5437                                    sizeof(compat_log)))
5438                         return -EFAULT;
5439                 log.slot         = compat_log.slot;
5440                 log.num_pages    = compat_log.num_pages;
5441                 log.first_page   = compat_log.first_page;
5442                 log.padding2     = compat_log.padding2;
5443                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5444 
5445                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5446                 break;
5447         }
5448 #endif
5449         case KVM_GET_DIRTY_LOG: {
5450                 struct compat_kvm_dirty_log compat_log;
5451                 struct kvm_dirty_log log;
5452 
5453                 if (copy_from_user(&compat_log, (void __user *)arg,
5454                                    sizeof(compat_log)))
5455                         return -EFAULT;
5456                 log.slot         = compat_log.slot;
5457                 log.padding1     = compat_log.padding1;
5458                 log.padding2     = compat_log.padding2;
5459                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5460 
5461                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5462                 break;
5463         }
5464         default:
5465                 r = kvm_vm_ioctl(filp, ioctl, arg);
5466         }
5467         return r;
5468 }
5469 #endif
5470 
5471 static struct file_operations kvm_vm_fops = {
5472         .release        = kvm_vm_release,
5473         .unlocked_ioctl = kvm_vm_ioctl,
5474         .llseek         = noop_llseek,
5475         KVM_COMPAT(kvm_vm_compat_ioctl),
5476 };
5477 
5478 bool file_is_kvm(struct file *file)
5479 {
5480         return file && file->f_op == &kvm_vm_fops;
5481 }
5482 EXPORT_SYMBOL_GPL(file_is_kvm);
5483 
5484 static int kvm_dev_ioctl_create_vm(unsigned long type)
5485 {
5486         char fdname[ITOA_MAX_LEN + 1];
5487         int r, fd;
5488         struct kvm *kvm;
5489         struct file *file;
5490 
5491         fd = get_unused_fd_flags(O_CLOEXEC);
5492         if (fd < 0)
5493                 return fd;
5494 
5495         snprintf(fdname, sizeof(fdname), "%d", fd);
5496 
5497         kvm = kvm_create_vm(type, fdname);
5498         if (IS_ERR(kvm)) {
5499                 r = PTR_ERR(kvm);
5500                 goto put_fd;
5501         }
5502 
5503         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5504         if (IS_ERR(file)) {
5505                 r = PTR_ERR(file);
5506                 goto put_kvm;
5507         }
5508 
5509         /*
5510          * Don't call kvm_put_kvm anymore at this point; file->f_op is
5511          * already set, with ->release() being kvm_vm_release().  In error
5512          * cases it will be called by the final fput(file) and will take
5513          * care of doing kvm_put_kvm(kvm).
5514          */
5515         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5516 
5517         fd_install(fd, file);
5518         return fd;
5519 
5520 put_kvm:
5521         kvm_put_kvm(kvm);
5522 put_fd:
5523         put_unused_fd(fd);
5524         return r;
5525 }
5526 
5527 static long kvm_dev_ioctl(struct file *filp,
5528                           unsigned int ioctl, unsigned long arg)
5529 {
5530         int r = -EINVAL;
5531 
5532         switch (ioctl) {
5533         case KVM_GET_API_VERSION:
5534                 if (arg)
5535                         goto out;
5536                 r = KVM_API_VERSION;
5537                 break;
5538         case KVM_CREATE_VM:
5539                 r = kvm_dev_ioctl_create_vm(arg);
5540                 break;
5541         case KVM_CHECK_EXTENSION:
5542                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5543                 break;
5544         case KVM_GET_VCPU_MMAP_SIZE:
5545                 if (arg)
5546                         goto out;
5547                 r = PAGE_SIZE;     /* struct kvm_run */
5548 #ifdef CONFIG_X86
5549                 r += PAGE_SIZE;    /* pio data page */
5550 #endif
5551 #ifdef CONFIG_KVM_MMIO
5552                 r += PAGE_SIZE;    /* coalesced mmio ring page */
5553 #endif
5554                 break;
5555         default:
5556                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
5557         }
5558 out:
5559         return r;
5560 }
5561 
5562 static struct file_operations kvm_chardev_ops = {
5563         .unlocked_ioctl = kvm_dev_ioctl,
5564         .llseek         = noop_llseek,
5565         KVM_COMPAT(kvm_dev_ioctl),
5566 };
5567 
5568 static struct miscdevice kvm_dev = {
5569         KVM_MINOR,
5570         "kvm",
5571         &kvm_chardev_ops,
5572 };
5573 
5574 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5575 __visible bool kvm_rebooting;
5576 EXPORT_SYMBOL_GPL(kvm_rebooting);
5577 
5578 static DEFINE_PER_CPU(bool, hardware_enabled);
5579 static int kvm_usage_count;
5580 
5581 static int __hardware_enable_nolock(void)
5582 {
5583         if (__this_cpu_read(hardware_enabled))
5584                 return 0;
5585 
5586         if (kvm_arch_hardware_enable()) {
5587                 pr_info("kvm: enabling virtualization on CPU%d failed\n",
5588                         raw_smp_processor_id());
5589                 return -EIO;
5590         }
5591 
5592         __this_cpu_write(hardware_enabled, true);
5593         return 0;
5594 }
5595 
5596 static void hardware_enable_nolock(void *failed)
5597 {
5598         if (__hardware_enable_nolock())
5599                 atomic_inc(failed);
5600 }
5601 
5602 static int kvm_online_cpu(unsigned int cpu)
5603 {
5604         int ret = 0;
5605 
5606         /*
5607          * Abort the CPU online process if hardware virtualization cannot
5608          * be enabled. Otherwise running VMs would encounter unrecoverable
5609          * errors when scheduled to this CPU.
5610          */
5611         mutex_lock(&kvm_lock);
5612         if (kvm_usage_count)
5613                 ret = __hardware_enable_nolock();
5614         mutex_unlock(&kvm_lock);
5615         return ret;
5616 }
5617 
5618 static void hardware_disable_nolock(void *junk)
5619 {
5620         /*
5621          * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5622          * hardware, not just CPUs that successfully enabled hardware!
5623          */
5624         if (!__this_cpu_read(hardware_enabled))
5625                 return;
5626 
5627         kvm_arch_hardware_disable();
5628 
5629         __this_cpu_write(hardware_enabled, false);
5630 }
5631 
5632 static int kvm_offline_cpu(unsigned int cpu)
5633 {
5634         mutex_lock(&kvm_lock);
5635         if (kvm_usage_count)
5636                 hardware_disable_nolock(NULL);
5637         mutex_unlock(&kvm_lock);
5638         return 0;
5639 }
5640 
5641 static void hardware_disable_all_nolock(void)
5642 {
5643         BUG_ON(!kvm_usage_count);
5644 
5645         kvm_usage_count--;
5646         if (!kvm_usage_count)
5647                 on_each_cpu(hardware_disable_nolock, NULL, 1);
5648 }
5649 
5650 static void hardware_disable_all(void)
5651 {
5652         cpus_read_lock();
5653         mutex_lock(&kvm_lock);
5654         hardware_disable_all_nolock();
5655         mutex_unlock(&kvm_lock);
5656         cpus_read_unlock();
5657 }
5658 
5659 static int hardware_enable_all(void)
5660 {
5661         atomic_t failed = ATOMIC_INIT(0);
5662         int r;
5663 
5664         /*
5665          * Do not enable hardware virtualization if the system is going down.
5666          * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5667          * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5668          * after kvm_reboot() is called.  Note, this relies on system_state
5669          * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5670          * hook instead of registering a dedicated reboot notifier (the latter
5671          * runs before system_state is updated).
5672          */
5673         if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5674             system_state == SYSTEM_RESTART)
5675                 return -EBUSY;
5676 
5677         /*
5678          * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5679          * is called, and so on_each_cpu() between them includes the CPU that
5680          * is being onlined.  As a result, hardware_enable_nolock() may get
5681          * invoked before kvm_online_cpu(), which also enables hardware if the
5682          * usage count is non-zero.  Disable CPU hotplug to avoid attempting to
5683          * enable hardware multiple times.
5684          */
5685         cpus_read_lock();
5686         mutex_lock(&kvm_lock);
5687 
5688         r = 0;
5689 
5690         kvm_usage_count++;
5691         if (kvm_usage_count == 1) {
5692                 on_each_cpu(hardware_enable_nolock, &failed, 1);
5693 
5694                 if (atomic_read(&failed)) {
5695                         hardware_disable_all_nolock();
5696                         r = -EBUSY;
5697                 }
5698         }
5699 
5700         mutex_unlock(&kvm_lock);
5701         cpus_read_unlock();
5702 
5703         return r;
5704 }
5705 
5706 static void kvm_shutdown(void)
5707 {
5708         /*
5709          * Disable hardware virtualization and set kvm_rebooting to indicate
5710          * that KVM has asynchronously disabled hardware virtualization, i.e.
5711          * that relevant errors and exceptions aren't entirely unexpected.
5712          * Some flavors of hardware virtualization need to be disabled before
5713          * transferring control to firmware (to perform shutdown/reboot), e.g.
5714          * on x86, virtualization can block INIT interrupts, which are used by
5715          * firmware to pull APs back under firmware control.  Note, this path
5716          * is used for both shutdown and reboot scenarios, i.e. neither name is
5717          * 100% comprehensive.
5718          */
5719         pr_info("kvm: exiting hardware virtualization\n");
5720         kvm_rebooting = true;
5721         on_each_cpu(hardware_disable_nolock, NULL, 1);
5722 }
5723 
5724 static int kvm_suspend(void)
5725 {
5726         /*
5727          * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5728          * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5729          * is stable.  Assert that kvm_lock is not held to ensure the system
5730          * isn't suspended while KVM is enabling hardware.  Hardware enabling
5731          * can be preempted, but the task cannot be frozen until it has dropped
5732          * all locks (userspace tasks are frozen via a fake signal).
5733          */
5734         lockdep_assert_not_held(&kvm_lock);
5735         lockdep_assert_irqs_disabled();
5736 
5737         if (kvm_usage_count)
5738                 hardware_disable_nolock(NULL);
5739         return 0;
5740 }
5741 
5742 static void kvm_resume(void)
5743 {
5744         lockdep_assert_not_held(&kvm_lock);
5745         lockdep_assert_irqs_disabled();
5746 
5747         if (kvm_usage_count)
5748                 WARN_ON_ONCE(__hardware_enable_nolock());
5749 }
5750 
5751 static struct syscore_ops kvm_syscore_ops = {
5752         .suspend = kvm_suspend,
5753         .resume = kvm_resume,
5754         .shutdown = kvm_shutdown,
5755 };
5756 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5757 static int hardware_enable_all(void)
5758 {
5759         return 0;
5760 }
5761 
5762 static void hardware_disable_all(void)
5763 {
5764 
5765 }
5766 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5767 
5768 static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5769 {
5770         if (dev->ops->destructor)
5771                 dev->ops->destructor(dev);
5772 }
5773 
5774 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5775 {
5776         int i;
5777 
5778         for (i = 0; i < bus->dev_count; i++) {
5779                 struct kvm_io_device *pos = bus->range[i].dev;
5780 
5781                 kvm_iodevice_destructor(pos);
5782         }
5783         kfree(bus);
5784 }
5785 
5786 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5787                                  const struct kvm_io_range *r2)
5788 {
5789         gpa_t addr1 = r1->addr;
5790         gpa_t addr2 = r2->addr;
5791 
5792         if (addr1 < addr2)
5793                 return -1;
5794 
5795         /* If r2->len == 0, match the exact address.  If r2->len != 0,
5796          * accept any overlapping write.  Any order is acceptable for
5797          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5798          * we process all of them.
5799          */
5800         if (r2->len) {
5801                 addr1 += r1->len;
5802                 addr2 += r2->len;
5803         }
5804 
5805         if (addr1 > addr2)
5806                 return 1;
5807 
5808         return 0;
5809 }
5810 
5811 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5812 {
5813         return kvm_io_bus_cmp(p1, p2);
5814 }
5815 
5816 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5817                              gpa_t addr, int len)
5818 {
5819         struct kvm_io_range *range, key;
5820         int off;
5821 
5822         key = (struct kvm_io_range) {
5823                 .addr = addr,
5824                 .len = len,
5825         };
5826 
5827         range = bsearch(&key, bus->range, bus->dev_count,
5828                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5829         if (range == NULL)
5830                 return -ENOENT;
5831 
5832         off = range - bus->range;
5833 
5834         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5835                 off--;
5836 
5837         return off;
5838 }
5839 
5840 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5841                               struct kvm_io_range *range, const void *val)
5842 {
5843         int idx;
5844 
5845         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5846         if (idx < 0)
5847                 return -EOPNOTSUPP;
5848 
5849         while (idx < bus->dev_count &&
5850                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5851                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5852                                         range->len, val))
5853                         return idx;
5854                 idx++;
5855         }
5856 
5857         return -EOPNOTSUPP;
5858 }
5859 
5860 /* kvm_io_bus_write - called under kvm->slots_lock */
5861 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5862                      int len, const void *val)
5863 {
5864         struct kvm_io_bus *bus;
5865         struct kvm_io_range range;
5866         int r;
5867 
5868         range = (struct kvm_io_range) {
5869                 .addr = addr,
5870                 .len = len,
5871         };
5872 
5873         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5874         if (!bus)
5875                 return -ENOMEM;
5876         r = __kvm_io_bus_write(vcpu, bus, &range, val);
5877         return r < 0 ? r : 0;
5878 }
5879 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5880 
5881 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5882 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5883                             gpa_t addr, int len, const void *val, long cookie)
5884 {
5885         struct kvm_io_bus *bus;
5886         struct kvm_io_range range;
5887 
5888         range = (struct kvm_io_range) {
5889                 .addr = addr,
5890                 .len = len,
5891         };
5892 
5893         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5894         if (!bus)
5895                 return -ENOMEM;
5896 
5897         /* First try the device referenced by cookie. */
5898         if ((cookie >= 0) && (cookie < bus->dev_count) &&
5899             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5900                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5901                                         val))
5902                         return cookie;
5903 
5904         /*
5905          * cookie contained garbage; fall back to search and return the
5906          * correct cookie value.
5907          */
5908         return __kvm_io_bus_write(vcpu, bus, &range, val);
5909 }
5910 
5911 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5912                              struct kvm_io_range *range, void *val)
5913 {
5914         int idx;
5915 
5916         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5917         if (idx < 0)
5918                 return -EOPNOTSUPP;
5919 
5920         while (idx < bus->dev_count &&
5921                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5922                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5923                                        range->len, val))
5924                         return idx;
5925                 idx++;
5926         }
5927 
5928         return -EOPNOTSUPP;
5929 }
5930 
5931 /* kvm_io_bus_read - called under kvm->slots_lock */
5932 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5933                     int len, void *val)
5934 {
5935         struct kvm_io_bus *bus;
5936         struct kvm_io_range range;
5937         int r;
5938 
5939         range = (struct kvm_io_range) {
5940                 .addr = addr,
5941                 .len = len,
5942         };
5943 
5944         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5945         if (!bus)
5946                 return -ENOMEM;
5947         r = __kvm_io_bus_read(vcpu, bus, &range, val);
5948         return r < 0 ? r : 0;
5949 }
5950 
5951 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5952                             int len, struct kvm_io_device *dev)
5953 {
5954         int i;
5955         struct kvm_io_bus *new_bus, *bus;
5956         struct kvm_io_range range;
5957 
5958         lockdep_assert_held(&kvm->slots_lock);
5959 
5960         bus = kvm_get_bus(kvm, bus_idx);
5961         if (!bus)
5962                 return -ENOMEM;
5963 
5964         /* exclude ioeventfd which is limited by maximum fd */
5965         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5966                 return -ENOSPC;
5967 
5968         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5969                           GFP_KERNEL_ACCOUNT);
5970         if (!new_bus)
5971                 return -ENOMEM;
5972 
5973         range = (struct kvm_io_range) {
5974                 .addr = addr,
5975                 .len = len,
5976                 .dev = dev,
5977         };
5978 
5979         for (i = 0; i < bus->dev_count; i++)
5980                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5981                         break;
5982 
5983         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5984         new_bus->dev_count++;
5985         new_bus->range[i] = range;
5986         memcpy(new_bus->range + i + 1, bus->range + i,
5987                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5988         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5989         synchronize_srcu_expedited(&kvm->srcu);
5990         kfree(bus);
5991 
5992         return 0;
5993 }
5994 
5995 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5996                               struct kvm_io_device *dev)
5997 {
5998         int i;
5999         struct kvm_io_bus *new_bus, *bus;
6000 
6001         lockdep_assert_held(&kvm->slots_lock);
6002 
6003         bus = kvm_get_bus(kvm, bus_idx);
6004         if (!bus)
6005                 return 0;
6006 
6007         for (i = 0; i < bus->dev_count; i++) {
6008                 if (bus->range[i].dev == dev) {
6009                         break;
6010                 }
6011         }
6012 
6013         if (i == bus->dev_count)
6014                 return 0;
6015 
6016         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
6017                           GFP_KERNEL_ACCOUNT);
6018         if (new_bus) {
6019                 memcpy(new_bus, bus, struct_size(bus, range, i));
6020                 new_bus->dev_count--;
6021                 memcpy(new_bus->range + i, bus->range + i + 1,
6022                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
6023         }
6024 
6025         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
6026         synchronize_srcu_expedited(&kvm->srcu);
6027 
6028         /*
6029          * If NULL bus is installed, destroy the old bus, including all the
6030          * attached devices. Otherwise, destroy the caller's device only.
6031          */
6032         if (!new_bus) {
6033                 pr_err("kvm: failed to shrink bus, removing it completely\n");
6034                 kvm_io_bus_destroy(bus);
6035                 return -ENOMEM;
6036         }
6037 
6038         kvm_iodevice_destructor(dev);
6039         kfree(bus);
6040         return 0;
6041 }
6042 
6043 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
6044                                          gpa_t addr)
6045 {
6046         struct kvm_io_bus *bus;
6047         int dev_idx, srcu_idx;
6048         struct kvm_io_device *iodev = NULL;
6049 
6050         srcu_idx = srcu_read_lock(&kvm->srcu);
6051 
6052         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
6053         if (!bus)
6054                 goto out_unlock;
6055 
6056         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
6057         if (dev_idx < 0)
6058                 goto out_unlock;
6059 
6060         iodev = bus->range[dev_idx].dev;
6061 
6062 out_unlock:
6063         srcu_read_unlock(&kvm->srcu, srcu_idx);
6064 
6065         return iodev;
6066 }
6067 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
6068 
6069 static int kvm_debugfs_open(struct inode *inode, struct file *file,
6070                            int (*get)(void *, u64 *), int (*set)(void *, u64),
6071                            const char *fmt)
6072 {
6073         int ret;
6074         struct kvm_stat_data *stat_data = inode->i_private;
6075 
6076         /*
6077          * The debugfs files are a reference to the kvm struct which
6078         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
6079         * avoids the race between open and the removal of the debugfs directory.
6080          */
6081         if (!kvm_get_kvm_safe(stat_data->kvm))
6082                 return -ENOENT;
6083 
6084         ret = simple_attr_open(inode, file, get,
6085                                kvm_stats_debugfs_mode(stat_data->desc) & 0222
6086                                ? set : NULL, fmt);
6087         if (ret)
6088                 kvm_put_kvm(stat_data->kvm);
6089 
6090         return ret;
6091 }
6092 
6093 static int kvm_debugfs_release(struct inode *inode, struct file *file)
6094 {
6095         struct kvm_stat_data *stat_data = inode->i_private;
6096 
6097         simple_attr_release(inode, file);
6098         kvm_put_kvm(stat_data->kvm);
6099 
6100         return 0;
6101 }
6102 
6103 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
6104 {
6105         *val = *(u64 *)((void *)(&kvm->stat) + offset);
6106 
6107         return 0;
6108 }
6109 
6110 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
6111 {
6112         *(u64 *)((void *)(&kvm->stat) + offset) = 0;
6113 
6114         return 0;
6115 }
6116 
6117 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
6118 {
6119         unsigned long i;
6120         struct kvm_vcpu *vcpu;
6121 
6122         *val = 0;
6123 
6124         kvm_for_each_vcpu(i, vcpu, kvm)
6125                 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
6126 
6127         return 0;
6128 }
6129 
6130 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
6131 {
6132         unsigned long i;
6133         struct kvm_vcpu *vcpu;
6134 
6135         kvm_for_each_vcpu(i, vcpu, kvm)
6136                 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
6137 
6138         return 0;
6139 }
6140 
6141 static int kvm_stat_data_get(void *data, u64 *val)
6142 {
6143         int r = -EFAULT;
6144         struct kvm_stat_data *stat_data = data;
6145 
6146         switch (stat_data->kind) {
6147         case KVM_STAT_VM:
6148                 r = kvm_get_stat_per_vm(stat_data->kvm,
6149                                         stat_data->desc->desc.offset, val);
6150                 break;
6151         case KVM_STAT_VCPU:
6152                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
6153                                           stat_data->desc->desc.offset, val);
6154                 break;
6155         }
6156 
6157         return r;
6158 }
6159 
6160 static int kvm_stat_data_clear(void *data, u64 val)
6161 {
6162         int r = -EFAULT;
6163         struct kvm_stat_data *stat_data = data;
6164 
6165         if (val)
6166                 return -EINVAL;
6167 
6168         switch (stat_data->kind) {
6169         case KVM_STAT_VM:
6170                 r = kvm_clear_stat_per_vm(stat_data->kvm,
6171                                           stat_data->desc->desc.offset);
6172                 break;
6173         case KVM_STAT_VCPU:
6174                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
6175                                             stat_data->desc->desc.offset);
6176                 break;
6177         }
6178 
6179         return r;
6180 }
6181 
6182 static int kvm_stat_data_open(struct inode *inode, struct file *file)
6183 {
6184         __simple_attr_check_format("%llu\n", 0ull);
6185         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
6186                                 kvm_stat_data_clear, "%llu\n");
6187 }
6188 
6189 static const struct file_operations stat_fops_per_vm = {
6190         .owner = THIS_MODULE,
6191         .open = kvm_stat_data_open,
6192         .release = kvm_debugfs_release,
6193         .read = simple_attr_read,
6194         .write = simple_attr_write,
6195         .llseek = no_llseek,
6196 };
6197 
6198 static int vm_stat_get(void *_offset, u64 *val)
6199 {
6200         unsigned offset = (long)_offset;
6201         struct kvm *kvm;
6202         u64 tmp_val;
6203 
6204         *val = 0;
6205         mutex_lock(&kvm_lock);
6206         list_for_each_entry(kvm, &vm_list, vm_list) {
6207                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
6208                 *val += tmp_val;
6209         }
6210         mutex_unlock(&kvm_lock);
6211         return 0;
6212 }
6213 
6214 static int vm_stat_clear(void *_offset, u64 val)
6215 {
6216         unsigned offset = (long)_offset;
6217         struct kvm *kvm;
6218 
6219         if (val)
6220                 return -EINVAL;
6221 
6222         mutex_lock(&kvm_lock);
6223         list_for_each_entry(kvm, &vm_list, vm_list) {
6224                 kvm_clear_stat_per_vm(kvm, offset);
6225         }
6226         mutex_unlock(&kvm_lock);
6227 
6228         return 0;
6229 }
6230 
6231 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
6232 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
6233 
6234 static int vcpu_stat_get(void *_offset, u64 *val)
6235 {
6236         unsigned offset = (long)_offset;
6237         struct kvm *kvm;
6238         u64 tmp_val;
6239 
6240         *val = 0;
6241         mutex_lock(&kvm_lock);
6242         list_for_each_entry(kvm, &vm_list, vm_list) {
6243                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
6244                 *val += tmp_val;
6245         }
6246         mutex_unlock(&kvm_lock);
6247         return 0;
6248 }
6249 
6250 static int vcpu_stat_clear(void *_offset, u64 val)
6251 {
6252         unsigned offset = (long)_offset;
6253         struct kvm *kvm;
6254 
6255         if (val)
6256                 return -EINVAL;
6257 
6258         mutex_lock(&kvm_lock);
6259         list_for_each_entry(kvm, &vm_list, vm_list) {
6260                 kvm_clear_stat_per_vcpu(kvm, offset);
6261         }
6262         mutex_unlock(&kvm_lock);
6263 
6264         return 0;
6265 }
6266 
6267 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
6268                         "%llu\n");
6269 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
6270 
6271 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
6272 {
6273         struct kobj_uevent_env *env;
6274         unsigned long long created, active;
6275 
6276         if (!kvm_dev.this_device || !kvm)
6277                 return;
6278 
6279         mutex_lock(&kvm_lock);
6280         if (type == KVM_EVENT_CREATE_VM) {
6281                 kvm_createvm_count++;
6282                 kvm_active_vms++;
6283         } else if (type == KVM_EVENT_DESTROY_VM) {
6284                 kvm_active_vms--;
6285         }
6286         created = kvm_createvm_count;
6287         active = kvm_active_vms;
6288         mutex_unlock(&kvm_lock);
6289 
6290         env = kzalloc(sizeof(*env), GFP_KERNEL);
6291         if (!env)
6292                 return;
6293 
6294         add_uevent_var(env, "CREATED=%llu", created);
6295         add_uevent_var(env, "COUNT=%llu", active);
6296 
6297         if (type == KVM_EVENT_CREATE_VM) {
6298                 add_uevent_var(env, "EVENT=create");
6299                 kvm->userspace_pid = task_pid_nr(current);
6300         } else if (type == KVM_EVENT_DESTROY_VM) {
6301                 add_uevent_var(env, "EVENT=destroy");
6302         }
6303         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
6304 
6305         if (!IS_ERR(kvm->debugfs_dentry)) {
6306                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
6307 
6308                 if (p) {
6309                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
6310                         if (!IS_ERR(tmp))
6311                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
6312                         kfree(p);
6313                 }
6314         }
6315         /* no need for checks, since we are adding at most only 5 keys */
6316         env->envp[env->envp_idx++] = NULL;
6317         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
6318         kfree(env);
6319 }
6320 
6321 static void kvm_init_debug(void)
6322 {
6323         const struct file_operations *fops;
6324         const struct _kvm_stats_desc *pdesc;
6325         int i;
6326 
6327         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
6328 
6329         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6330                 pdesc = &kvm_vm_stats_desc[i];
6331                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
6332                         fops = &vm_stat_fops;
6333                 else
6334                         fops = &vm_stat_readonly_fops;
6335                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6336                                 kvm_debugfs_dir,
6337                                 (void *)(long)pdesc->desc.offset, fops);
6338         }
6339 
6340         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6341                 pdesc = &kvm_vcpu_stats_desc[i];
6342                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
6343                         fops = &vcpu_stat_fops;
6344                 else
6345                         fops = &vcpu_stat_readonly_fops;
6346                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6347                                 kvm_debugfs_dir,
6348                                 (void *)(long)pdesc->desc.offset, fops);
6349         }
6350 }
6351 
6352 static inline
6353 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6354 {
6355         return container_of(pn, struct kvm_vcpu, preempt_notifier);
6356 }
6357 
6358 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6359 {
6360         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6361 
6362         WRITE_ONCE(vcpu->preempted, false);
6363         WRITE_ONCE(vcpu->ready, false);
6364 
6365         __this_cpu_write(kvm_running_vcpu, vcpu);
6366         kvm_arch_vcpu_load(vcpu, cpu);
6367 
6368         WRITE_ONCE(vcpu->scheduled_out, false);
6369 }
6370 
6371 static void kvm_sched_out(struct preempt_notifier *pn,
6372                           struct task_struct *next)
6373 {
6374         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6375 
6376         WRITE_ONCE(vcpu->scheduled_out, true);
6377 
6378         if (current->on_rq && vcpu->wants_to_run) {
6379                 WRITE_ONCE(vcpu->preempted, true);
6380                 WRITE_ONCE(vcpu->ready, true);
6381         }
6382         kvm_arch_vcpu_put(vcpu);
6383         __this_cpu_write(kvm_running_vcpu, NULL);
6384 }
6385 
6386 /**
6387  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
6388  *
6389  * We can disable preemption locally around accessing the per-CPU variable,
6390  * and use the resolved vcpu pointer after enabling preemption again,
6391  * because even if the current thread is migrated to another CPU, reading
6392  * the per-CPU value later will give us the same value as we update the
6393  * per-CPU variable in the preempt notifier handlers.
6394  */
6395 struct kvm_vcpu *kvm_get_running_vcpu(void)
6396 {
6397         struct kvm_vcpu *vcpu;
6398 
6399         preempt_disable();
6400         vcpu = __this_cpu_read(kvm_running_vcpu);
6401         preempt_enable();
6402 
6403         return vcpu;
6404 }
6405 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
6406 
6407 /**
6408  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6409  */
6410 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6411 {
6412         return &kvm_running_vcpu;
6413 }
6414 
6415 #ifdef CONFIG_GUEST_PERF_EVENTS
6416 static unsigned int kvm_guest_state(void)
6417 {
6418         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6419         unsigned int state;
6420 
6421         if (!kvm_arch_pmi_in_guest(vcpu))
6422                 return 0;
6423 
6424         state = PERF_GUEST_ACTIVE;
6425         if (!kvm_arch_vcpu_in_kernel(vcpu))
6426                 state |= PERF_GUEST_USER;
6427 
6428         return state;
6429 }
6430 
6431 static unsigned long kvm_guest_get_ip(void)
6432 {
6433         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6434 
6435         /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6436         if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6437                 return 0;
6438 
6439         return kvm_arch_vcpu_get_ip(vcpu);
6440 }
6441 
6442 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6443         .state                  = kvm_guest_state,
6444         .get_ip                 = kvm_guest_get_ip,
6445         .handle_intel_pt_intr   = NULL,
6446 };
6447 
6448 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6449 {
6450         kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6451         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6452 }
6453 void kvm_unregister_perf_callbacks(void)
6454 {
6455         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6456 }
6457 #endif
6458 
6459 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6460 {
6461         int r;
6462         int cpu;
6463 
6464 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6465         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
6466                                       kvm_online_cpu, kvm_offline_cpu);
6467         if (r)
6468                 return r;
6469 
6470         register_syscore_ops(&kvm_syscore_ops);
6471 #endif
6472 
6473         /* A kmem cache lets us meet the alignment requirements of fx_save. */
6474         if (!vcpu_align)
6475                 vcpu_align = __alignof__(struct kvm_vcpu);
6476         kvm_vcpu_cache =
6477                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6478                                            SLAB_ACCOUNT,
6479                                            offsetof(struct kvm_vcpu, arch),
6480                                            offsetofend(struct kvm_vcpu, stats_id)
6481                                            - offsetof(struct kvm_vcpu, arch),
6482                                            NULL);
6483         if (!kvm_vcpu_cache) {
6484                 r = -ENOMEM;
6485                 goto err_vcpu_cache;
6486         }
6487 
6488         for_each_possible_cpu(cpu) {
6489                 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6490                                             GFP_KERNEL, cpu_to_node(cpu))) {
6491                         r = -ENOMEM;
6492                         goto err_cpu_kick_mask;
6493                 }
6494         }
6495 
6496         r = kvm_irqfd_init();
6497         if (r)
6498                 goto err_irqfd;
6499 
6500         r = kvm_async_pf_init();
6501         if (r)
6502                 goto err_async_pf;
6503 
6504         kvm_chardev_ops.owner = module;
6505         kvm_vm_fops.owner = module;
6506         kvm_vcpu_fops.owner = module;
6507         kvm_device_fops.owner = module;
6508 
6509         kvm_preempt_ops.sched_in = kvm_sched_in;
6510         kvm_preempt_ops.sched_out = kvm_sched_out;
6511 
6512         kvm_init_debug();
6513 
6514         r = kvm_vfio_ops_init();
6515         if (WARN_ON_ONCE(r))
6516                 goto err_vfio;
6517 
6518         kvm_gmem_init(module);
6519 
6520         /*
6521          * Registration _must_ be the very last thing done, as this exposes
6522          * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6523          */
6524         r = misc_register(&kvm_dev);
6525         if (r) {
6526                 pr_err("kvm: misc device register failed\n");
6527                 goto err_register;
6528         }
6529 
6530         return 0;
6531 
6532 err_register:
6533         kvm_vfio_ops_exit();
6534 err_vfio:
6535         kvm_async_pf_deinit();
6536 err_async_pf:
6537         kvm_irqfd_exit();
6538 err_irqfd:
6539 err_cpu_kick_mask:
6540         for_each_possible_cpu(cpu)
6541                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6542         kmem_cache_destroy(kvm_vcpu_cache);
6543 err_vcpu_cache:
6544 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6545         unregister_syscore_ops(&kvm_syscore_ops);
6546         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6547 #endif
6548         return r;
6549 }
6550 EXPORT_SYMBOL_GPL(kvm_init);
6551 
6552 void kvm_exit(void)
6553 {
6554         int cpu;
6555 
6556         /*
6557          * Note, unregistering /dev/kvm doesn't strictly need to come first,
6558          * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6559          * to KVM while the module is being stopped.
6560          */
6561         misc_deregister(&kvm_dev);
6562 
6563         debugfs_remove_recursive(kvm_debugfs_dir);
6564         for_each_possible_cpu(cpu)
6565                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6566         kmem_cache_destroy(kvm_vcpu_cache);
6567         kvm_vfio_ops_exit();
6568         kvm_async_pf_deinit();
6569 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6570         unregister_syscore_ops(&kvm_syscore_ops);
6571         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6572 #endif
6573         kvm_irqfd_exit();
6574 }
6575 EXPORT_SYMBOL_GPL(kvm_exit);
6576 
6577 struct kvm_vm_worker_thread_context {
6578         struct kvm *kvm;
6579         struct task_struct *parent;
6580         struct completion init_done;
6581         kvm_vm_thread_fn_t thread_fn;
6582         uintptr_t data;
6583         int err;
6584 };
6585 
6586 static int kvm_vm_worker_thread(void *context)
6587 {
6588         /*
6589          * The init_context is allocated on the stack of the parent thread, so
6590          * we have to locally copy anything that is needed beyond initialization
6591          */
6592         struct kvm_vm_worker_thread_context *init_context = context;
6593         struct task_struct *parent;
6594         struct kvm *kvm = init_context->kvm;
6595         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6596         uintptr_t data = init_context->data;
6597         int err;
6598 
6599         err = kthread_park(current);
6600         /* kthread_park(current) is never supposed to return an error */
6601         WARN_ON(err != 0);
6602         if (err)
6603                 goto init_complete;
6604 
6605         err = cgroup_attach_task_all(init_context->parent, current);
6606         if (err) {
6607                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6608                         __func__, err);
6609                 goto init_complete;
6610         }
6611 
6612         set_user_nice(current, task_nice(init_context->parent));
6613 
6614 init_complete:
6615         init_context->err = err;
6616         complete(&init_context->init_done);
6617         init_context = NULL;
6618 
6619         if (err)
6620                 goto out;
6621 
6622         /* Wait to be woken up by the spawner before proceeding. */
6623         kthread_parkme();
6624 
6625         if (!kthread_should_stop())
6626                 err = thread_fn(kvm, data);
6627 
6628 out:
6629         /*
6630          * Move kthread back to its original cgroup to prevent it lingering in
6631          * the cgroup of the VM process, after the latter finishes its
6632          * execution.
6633          *
6634          * kthread_stop() waits on the 'exited' completion condition which is
6635          * set in exit_mm(), via mm_release(), in do_exit(). However, the
6636          * kthread is removed from the cgroup in the cgroup_exit() which is
6637          * called after the exit_mm(). This causes the kthread_stop() to return
6638          * before the kthread actually quits the cgroup.
6639          */
6640         rcu_read_lock();
6641         parent = rcu_dereference(current->real_parent);
6642         get_task_struct(parent);
6643         rcu_read_unlock();
6644         cgroup_attach_task_all(parent, current);
6645         put_task_struct(parent);
6646 
6647         return err;
6648 }
6649 
6650 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6651                                 uintptr_t data, const char *name,
6652                                 struct task_struct **thread_ptr)
6653 {
6654         struct kvm_vm_worker_thread_context init_context = {};
6655         struct task_struct *thread;
6656 
6657         *thread_ptr = NULL;
6658         init_context.kvm = kvm;
6659         init_context.parent = current;
6660         init_context.thread_fn = thread_fn;
6661         init_context.data = data;
6662         init_completion(&init_context.init_done);
6663 
6664         thread = kthread_run(kvm_vm_worker_thread, &init_context,
6665                              "%s-%d", name, task_pid_nr(current));
6666         if (IS_ERR(thread))
6667                 return PTR_ERR(thread);
6668 
6669         /* kthread_run is never supposed to return NULL */
6670         WARN_ON(thread == NULL);
6671 
6672         wait_for_completion(&init_context.init_done);
6673 
6674         if (!init_context.err)
6675                 *thread_ptr = thread;
6676 
6677         return init_context.err;
6678 }
6679 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php