~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/virt/kvm/kvm_main.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Kernel-based Virtual Machine (KVM) Hypervisor
  4  *
  5  * Copyright (C) 2006 Qumranet, Inc.
  6  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  7  *
  8  * Authors:
  9  *   Avi Kivity   <avi@qumranet.com>
 10  *   Yaniv Kamay  <yaniv@qumranet.com>
 11  */
 12 
 13 #include <kvm/iodev.h>
 14 
 15 #include <linux/kvm_host.h>
 16 #include <linux/kvm.h>
 17 #include <linux/module.h>
 18 #include <linux/errno.h>
 19 #include <linux/percpu.h>
 20 #include <linux/mm.h>
 21 #include <linux/miscdevice.h>
 22 #include <linux/vmalloc.h>
 23 #include <linux/reboot.h>
 24 #include <linux/debugfs.h>
 25 #include <linux/highmem.h>
 26 #include <linux/file.h>
 27 #include <linux/syscore_ops.h>
 28 #include <linux/cpu.h>
 29 #include <linux/sched/signal.h>
 30 #include <linux/sched/mm.h>
 31 #include <linux/sched/stat.h>
 32 #include <linux/cpumask.h>
 33 #include <linux/smp.h>
 34 #include <linux/anon_inodes.h>
 35 #include <linux/profile.h>
 36 #include <linux/kvm_para.h>
 37 #include <linux/pagemap.h>
 38 #include <linux/mman.h>
 39 #include <linux/swap.h>
 40 #include <linux/bitops.h>
 41 #include <linux/spinlock.h>
 42 #include <linux/compat.h>
 43 #include <linux/srcu.h>
 44 #include <linux/hugetlb.h>
 45 #include <linux/slab.h>
 46 #include <linux/sort.h>
 47 #include <linux/bsearch.h>
 48 #include <linux/io.h>
 49 #include <linux/lockdep.h>
 50 #include <linux/kthread.h>
 51 #include <linux/suspend.h>
 52 
 53 #include <asm/processor.h>
 54 #include <asm/ioctl.h>
 55 #include <linux/uaccess.h>
 56 
 57 #include "coalesced_mmio.h"
 58 #include "async_pf.h"
 59 #include "kvm_mm.h"
 60 #include "vfio.h"
 61 
 62 #include <trace/events/ipi.h>
 63 
 64 #define CREATE_TRACE_POINTS
 65 #include <trace/events/kvm.h>
 66 
 67 #include <linux/kvm_dirty_ring.h>
 68 
 69 
 70 /* Worst case buffer size needed for holding an integer. */
 71 #define ITOA_MAX_LEN 12
 72 
 73 MODULE_AUTHOR("Qumranet");
 74 MODULE_DESCRIPTION("Kernel-based Virtual Machine (KVM) Hypervisor");
 75 MODULE_LICENSE("GPL");
 76 
 77 /* Architectures should define their poll value according to the halt latency */
 78 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
 79 module_param(halt_poll_ns, uint, 0644);
 80 EXPORT_SYMBOL_GPL(halt_poll_ns);
 81 
 82 /* Default doubles per-vcpu halt_poll_ns. */
 83 unsigned int halt_poll_ns_grow = 2;
 84 module_param(halt_poll_ns_grow, uint, 0644);
 85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
 86 
 87 /* The start value to grow halt_poll_ns from */
 88 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
 89 module_param(halt_poll_ns_grow_start, uint, 0644);
 90 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
 91 
 92 /* Default halves per-vcpu halt_poll_ns. */
 93 unsigned int halt_poll_ns_shrink = 2;
 94 module_param(halt_poll_ns_shrink, uint, 0644);
 95 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
 96 
 97 /*
 98  * Ordering of locks:
 99  *
100  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
101  */
102 
103 DEFINE_MUTEX(kvm_lock);
104 LIST_HEAD(vm_list);
105 
106 static struct kmem_cache *kvm_vcpu_cache;
107 
108 static __read_mostly struct preempt_ops kvm_preempt_ops;
109 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
110 
111 static struct dentry *kvm_debugfs_dir;
112 
113 static const struct file_operations stat_fops_per_vm;
114 
115 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
116                            unsigned long arg);
117 #ifdef CONFIG_KVM_COMPAT
118 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
119                                   unsigned long arg);
120 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
121 #else
122 /*
123  * For architectures that don't implement a compat infrastructure,
124  * adopt a double line of defense:
125  * - Prevent a compat task from opening /dev/kvm
126  * - If the open has been done by a 64bit task, and the KVM fd
127  *   passed to a compat task, let the ioctls fail.
128  */
129 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
130                                 unsigned long arg) { return -EINVAL; }
131 
132 static int kvm_no_compat_open(struct inode *inode, struct file *file)
133 {
134         return is_compat_task() ? -ENODEV : 0;
135 }
136 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
137                         .open           = kvm_no_compat_open
138 #endif
139 static int hardware_enable_all(void);
140 static void hardware_disable_all(void);
141 
142 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
143 
144 #define KVM_EVENT_CREATE_VM 0
145 #define KVM_EVENT_DESTROY_VM 1
146 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
147 static unsigned long long kvm_createvm_count;
148 static unsigned long long kvm_active_vms;
149 
150 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
151 
152 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
153 {
154 }
155 
156 bool kvm_is_zone_device_page(struct page *page)
157 {
158         /*
159          * The metadata used by is_zone_device_page() to determine whether or
160          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
161          * the device has been pinned, e.g. by get_user_pages().  WARN if the
162          * page_count() is zero to help detect bad usage of this helper.
163          */
164         if (WARN_ON_ONCE(!page_count(page)))
165                 return false;
166 
167         return is_zone_device_page(page);
168 }
169 
170 /*
171  * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
172  * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
173  * is likely incomplete, it has been compiled purely through people wanting to
174  * back guest with a certain type of memory and encountering issues.
175  */
176 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
177 {
178         struct page *page;
179 
180         if (!pfn_valid(pfn))
181                 return NULL;
182 
183         page = pfn_to_page(pfn);
184         if (!PageReserved(page))
185                 return page;
186 
187         /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
188         if (is_zero_pfn(pfn))
189                 return page;
190 
191         /*
192          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
193          * perspective they are "normal" pages, albeit with slightly different
194          * usage rules.
195          */
196         if (kvm_is_zone_device_page(page))
197                 return page;
198 
199         return NULL;
200 }
201 
202 /*
203  * Switches to specified vcpu, until a matching vcpu_put()
204  */
205 void vcpu_load(struct kvm_vcpu *vcpu)
206 {
207         int cpu = get_cpu();
208 
209         __this_cpu_write(kvm_running_vcpu, vcpu);
210         preempt_notifier_register(&vcpu->preempt_notifier);
211         kvm_arch_vcpu_load(vcpu, cpu);
212         put_cpu();
213 }
214 EXPORT_SYMBOL_GPL(vcpu_load);
215 
216 void vcpu_put(struct kvm_vcpu *vcpu)
217 {
218         preempt_disable();
219         kvm_arch_vcpu_put(vcpu);
220         preempt_notifier_unregister(&vcpu->preempt_notifier);
221         __this_cpu_write(kvm_running_vcpu, NULL);
222         preempt_enable();
223 }
224 EXPORT_SYMBOL_GPL(vcpu_put);
225 
226 /* TODO: merge with kvm_arch_vcpu_should_kick */
227 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
228 {
229         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
230 
231         /*
232          * We need to wait for the VCPU to reenable interrupts and get out of
233          * READING_SHADOW_PAGE_TABLES mode.
234          */
235         if (req & KVM_REQUEST_WAIT)
236                 return mode != OUTSIDE_GUEST_MODE;
237 
238         /*
239          * Need to kick a running VCPU, but otherwise there is nothing to do.
240          */
241         return mode == IN_GUEST_MODE;
242 }
243 
244 static void ack_kick(void *_completed)
245 {
246 }
247 
248 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
249 {
250         if (cpumask_empty(cpus))
251                 return false;
252 
253         smp_call_function_many(cpus, ack_kick, NULL, wait);
254         return true;
255 }
256 
257 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
258                                   struct cpumask *tmp, int current_cpu)
259 {
260         int cpu;
261 
262         if (likely(!(req & KVM_REQUEST_NO_ACTION)))
263                 __kvm_make_request(req, vcpu);
264 
265         if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
266                 return;
267 
268         /*
269          * Note, the vCPU could get migrated to a different pCPU at any point
270          * after kvm_request_needs_ipi(), which could result in sending an IPI
271          * to the previous pCPU.  But, that's OK because the purpose of the IPI
272          * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
273          * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
274          * after this point is also OK, as the requirement is only that KVM wait
275          * for vCPUs that were reading SPTEs _before_ any changes were
276          * finalized. See kvm_vcpu_kick() for more details on handling requests.
277          */
278         if (kvm_request_needs_ipi(vcpu, req)) {
279                 cpu = READ_ONCE(vcpu->cpu);
280                 if (cpu != -1 && cpu != current_cpu)
281                         __cpumask_set_cpu(cpu, tmp);
282         }
283 }
284 
285 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
286                                  unsigned long *vcpu_bitmap)
287 {
288         struct kvm_vcpu *vcpu;
289         struct cpumask *cpus;
290         int i, me;
291         bool called;
292 
293         me = get_cpu();
294 
295         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
296         cpumask_clear(cpus);
297 
298         for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
299                 vcpu = kvm_get_vcpu(kvm, i);
300                 if (!vcpu)
301                         continue;
302                 kvm_make_vcpu_request(vcpu, req, cpus, me);
303         }
304 
305         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
306         put_cpu();
307 
308         return called;
309 }
310 
311 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
312 {
313         struct kvm_vcpu *vcpu;
314         struct cpumask *cpus;
315         unsigned long i;
316         bool called;
317         int me;
318 
319         me = get_cpu();
320 
321         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
322         cpumask_clear(cpus);
323 
324         kvm_for_each_vcpu(i, vcpu, kvm)
325                 kvm_make_vcpu_request(vcpu, req, cpus, me);
326 
327         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
328         put_cpu();
329 
330         return called;
331 }
332 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
333 
334 void kvm_flush_remote_tlbs(struct kvm *kvm)
335 {
336         ++kvm->stat.generic.remote_tlb_flush_requests;
337 
338         /*
339          * We want to publish modifications to the page tables before reading
340          * mode. Pairs with a memory barrier in arch-specific code.
341          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
342          * and smp_mb in walk_shadow_page_lockless_begin/end.
343          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
344          *
345          * There is already an smp_mb__after_atomic() before
346          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
347          * barrier here.
348          */
349         if (!kvm_arch_flush_remote_tlbs(kvm)
350             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
351                 ++kvm->stat.generic.remote_tlb_flush;
352 }
353 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
354 
355 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
356 {
357         if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
358                 return;
359 
360         /*
361          * Fall back to a flushing entire TLBs if the architecture range-based
362          * TLB invalidation is unsupported or can't be performed for whatever
363          * reason.
364          */
365         kvm_flush_remote_tlbs(kvm);
366 }
367 
368 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
369                                    const struct kvm_memory_slot *memslot)
370 {
371         /*
372          * All current use cases for flushing the TLBs for a specific memslot
373          * are related to dirty logging, and many do the TLB flush out of
374          * mmu_lock. The interaction between the various operations on memslot
375          * must be serialized by slots_locks to ensure the TLB flush from one
376          * operation is observed by any other operation on the same memslot.
377          */
378         lockdep_assert_held(&kvm->slots_lock);
379         kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
380 }
381 
382 static void kvm_flush_shadow_all(struct kvm *kvm)
383 {
384         kvm_arch_flush_shadow_all(kvm);
385         kvm_arch_guest_memory_reclaimed(kvm);
386 }
387 
388 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
389 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
390                                                gfp_t gfp_flags)
391 {
392         void *page;
393 
394         gfp_flags |= mc->gfp_zero;
395 
396         if (mc->kmem_cache)
397                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
398 
399         page = (void *)__get_free_page(gfp_flags);
400         if (page && mc->init_value)
401                 memset64(page, mc->init_value, PAGE_SIZE / sizeof(u64));
402         return page;
403 }
404 
405 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
406 {
407         gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
408         void *obj;
409 
410         if (mc->nobjs >= min)
411                 return 0;
412 
413         if (unlikely(!mc->objects)) {
414                 if (WARN_ON_ONCE(!capacity))
415                         return -EIO;
416 
417                 /*
418                  * Custom init values can be used only for page allocations,
419                  * and obviously conflict with __GFP_ZERO.
420                  */
421                 if (WARN_ON_ONCE(mc->init_value && (mc->kmem_cache || mc->gfp_zero)))
422                         return -EIO;
423 
424                 mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp);
425                 if (!mc->objects)
426                         return -ENOMEM;
427 
428                 mc->capacity = capacity;
429         }
430 
431         /* It is illegal to request a different capacity across topups. */
432         if (WARN_ON_ONCE(mc->capacity != capacity))
433                 return -EIO;
434 
435         while (mc->nobjs < mc->capacity) {
436                 obj = mmu_memory_cache_alloc_obj(mc, gfp);
437                 if (!obj)
438                         return mc->nobjs >= min ? 0 : -ENOMEM;
439                 mc->objects[mc->nobjs++] = obj;
440         }
441         return 0;
442 }
443 
444 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
445 {
446         return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
447 }
448 
449 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
450 {
451         return mc->nobjs;
452 }
453 
454 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
455 {
456         while (mc->nobjs) {
457                 if (mc->kmem_cache)
458                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
459                 else
460                         free_page((unsigned long)mc->objects[--mc->nobjs]);
461         }
462 
463         kvfree(mc->objects);
464 
465         mc->objects = NULL;
466         mc->capacity = 0;
467 }
468 
469 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
470 {
471         void *p;
472 
473         if (WARN_ON(!mc->nobjs))
474                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
475         else
476                 p = mc->objects[--mc->nobjs];
477         BUG_ON(!p);
478         return p;
479 }
480 #endif
481 
482 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
483 {
484         mutex_init(&vcpu->mutex);
485         vcpu->cpu = -1;
486         vcpu->kvm = kvm;
487         vcpu->vcpu_id = id;
488         vcpu->pid = NULL;
489 #ifndef __KVM_HAVE_ARCH_WQP
490         rcuwait_init(&vcpu->wait);
491 #endif
492         kvm_async_pf_vcpu_init(vcpu);
493 
494         kvm_vcpu_set_in_spin_loop(vcpu, false);
495         kvm_vcpu_set_dy_eligible(vcpu, false);
496         vcpu->preempted = false;
497         vcpu->ready = false;
498         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
499         vcpu->last_used_slot = NULL;
500 
501         /* Fill the stats id string for the vcpu */
502         snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
503                  task_pid_nr(current), id);
504 }
505 
506 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
507 {
508         kvm_arch_vcpu_destroy(vcpu);
509         kvm_dirty_ring_free(&vcpu->dirty_ring);
510 
511         /*
512          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
513          * the vcpu->pid pointer, and at destruction time all file descriptors
514          * are already gone.
515          */
516         put_pid(rcu_dereference_protected(vcpu->pid, 1));
517 
518         free_page((unsigned long)vcpu->run);
519         kmem_cache_free(kvm_vcpu_cache, vcpu);
520 }
521 
522 void kvm_destroy_vcpus(struct kvm *kvm)
523 {
524         unsigned long i;
525         struct kvm_vcpu *vcpu;
526 
527         kvm_for_each_vcpu(i, vcpu, kvm) {
528                 kvm_vcpu_destroy(vcpu);
529                 xa_erase(&kvm->vcpu_array, i);
530         }
531 
532         atomic_set(&kvm->online_vcpus, 0);
533 }
534 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
535 
536 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
537 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
538 {
539         return container_of(mn, struct kvm, mmu_notifier);
540 }
541 
542 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
543 
544 typedef void (*on_lock_fn_t)(struct kvm *kvm);
545 
546 struct kvm_mmu_notifier_range {
547         /*
548          * 64-bit addresses, as KVM notifiers can operate on host virtual
549          * addresses (unsigned long) and guest physical addresses (64-bit).
550          */
551         u64 start;
552         u64 end;
553         union kvm_mmu_notifier_arg arg;
554         gfn_handler_t handler;
555         on_lock_fn_t on_lock;
556         bool flush_on_ret;
557         bool may_block;
558 };
559 
560 /*
561  * The inner-most helper returns a tuple containing the return value from the
562  * arch- and action-specific handler, plus a flag indicating whether or not at
563  * least one memslot was found, i.e. if the handler found guest memory.
564  *
565  * Note, most notifiers are averse to booleans, so even though KVM tracks the
566  * return from arch code as a bool, outer helpers will cast it to an int. :-(
567  */
568 typedef struct kvm_mmu_notifier_return {
569         bool ret;
570         bool found_memslot;
571 } kvm_mn_ret_t;
572 
573 /*
574  * Use a dedicated stub instead of NULL to indicate that there is no callback
575  * function/handler.  The compiler technically can't guarantee that a real
576  * function will have a non-zero address, and so it will generate code to
577  * check for !NULL, whereas comparing against a stub will be elided at compile
578  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
579  */
580 static void kvm_null_fn(void)
581 {
582 
583 }
584 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
585 
586 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
587 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)          \
588         for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
589              node;                                                           \
590              node = interval_tree_iter_next(node, start, last))      \
591 
592 static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm,
593                                                            const struct kvm_mmu_notifier_range *range)
594 {
595         struct kvm_mmu_notifier_return r = {
596                 .ret = false,
597                 .found_memslot = false,
598         };
599         struct kvm_gfn_range gfn_range;
600         struct kvm_memory_slot *slot;
601         struct kvm_memslots *slots;
602         int i, idx;
603 
604         if (WARN_ON_ONCE(range->end <= range->start))
605                 return r;
606 
607         /* A null handler is allowed if and only if on_lock() is provided. */
608         if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
609                          IS_KVM_NULL_FN(range->handler)))
610                 return r;
611 
612         idx = srcu_read_lock(&kvm->srcu);
613 
614         for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
615                 struct interval_tree_node *node;
616 
617                 slots = __kvm_memslots(kvm, i);
618                 kvm_for_each_memslot_in_hva_range(node, slots,
619                                                   range->start, range->end - 1) {
620                         unsigned long hva_start, hva_end;
621 
622                         slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
623                         hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
624                         hva_end = min_t(unsigned long, range->end,
625                                         slot->userspace_addr + (slot->npages << PAGE_SHIFT));
626 
627                         /*
628                          * To optimize for the likely case where the address
629                          * range is covered by zero or one memslots, don't
630                          * bother making these conditional (to avoid writes on
631                          * the second or later invocation of the handler).
632                          */
633                         gfn_range.arg = range->arg;
634                         gfn_range.may_block = range->may_block;
635 
636                         /*
637                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
638                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
639                          */
640                         gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
641                         gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
642                         gfn_range.slot = slot;
643 
644                         if (!r.found_memslot) {
645                                 r.found_memslot = true;
646                                 KVM_MMU_LOCK(kvm);
647                                 if (!IS_KVM_NULL_FN(range->on_lock))
648                                         range->on_lock(kvm);
649 
650                                 if (IS_KVM_NULL_FN(range->handler))
651                                         goto mmu_unlock;
652                         }
653                         r.ret |= range->handler(kvm, &gfn_range);
654                 }
655         }
656 
657         if (range->flush_on_ret && r.ret)
658                 kvm_flush_remote_tlbs(kvm);
659 
660 mmu_unlock:
661         if (r.found_memslot)
662                 KVM_MMU_UNLOCK(kvm);
663 
664         srcu_read_unlock(&kvm->srcu, idx);
665 
666         return r;
667 }
668 
669 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
670                                                 unsigned long start,
671                                                 unsigned long end,
672                                                 gfn_handler_t handler)
673 {
674         struct kvm *kvm = mmu_notifier_to_kvm(mn);
675         const struct kvm_mmu_notifier_range range = {
676                 .start          = start,
677                 .end            = end,
678                 .handler        = handler,
679                 .on_lock        = (void *)kvm_null_fn,
680                 .flush_on_ret   = true,
681                 .may_block      = false,
682         };
683 
684         return __kvm_handle_hva_range(kvm, &range).ret;
685 }
686 
687 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
688                                                          unsigned long start,
689                                                          unsigned long end,
690                                                          gfn_handler_t handler)
691 {
692         struct kvm *kvm = mmu_notifier_to_kvm(mn);
693         const struct kvm_mmu_notifier_range range = {
694                 .start          = start,
695                 .end            = end,
696                 .handler        = handler,
697                 .on_lock        = (void *)kvm_null_fn,
698                 .flush_on_ret   = false,
699                 .may_block      = false,
700         };
701 
702         return __kvm_handle_hva_range(kvm, &range).ret;
703 }
704 
705 void kvm_mmu_invalidate_begin(struct kvm *kvm)
706 {
707         lockdep_assert_held_write(&kvm->mmu_lock);
708         /*
709          * The count increase must become visible at unlock time as no
710          * spte can be established without taking the mmu_lock and
711          * count is also read inside the mmu_lock critical section.
712          */
713         kvm->mmu_invalidate_in_progress++;
714 
715         if (likely(kvm->mmu_invalidate_in_progress == 1)) {
716                 kvm->mmu_invalidate_range_start = INVALID_GPA;
717                 kvm->mmu_invalidate_range_end = INVALID_GPA;
718         }
719 }
720 
721 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
722 {
723         lockdep_assert_held_write(&kvm->mmu_lock);
724 
725         WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
726 
727         if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
728                 kvm->mmu_invalidate_range_start = start;
729                 kvm->mmu_invalidate_range_end = end;
730         } else {
731                 /*
732                  * Fully tracking multiple concurrent ranges has diminishing
733                  * returns. Keep things simple and just find the minimal range
734                  * which includes the current and new ranges. As there won't be
735                  * enough information to subtract a range after its invalidate
736                  * completes, any ranges invalidated concurrently will
737                  * accumulate and persist until all outstanding invalidates
738                  * complete.
739                  */
740                 kvm->mmu_invalidate_range_start =
741                         min(kvm->mmu_invalidate_range_start, start);
742                 kvm->mmu_invalidate_range_end =
743                         max(kvm->mmu_invalidate_range_end, end);
744         }
745 }
746 
747 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
748 {
749         kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
750         return kvm_unmap_gfn_range(kvm, range);
751 }
752 
753 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
754                                         const struct mmu_notifier_range *range)
755 {
756         struct kvm *kvm = mmu_notifier_to_kvm(mn);
757         const struct kvm_mmu_notifier_range hva_range = {
758                 .start          = range->start,
759                 .end            = range->end,
760                 .handler        = kvm_mmu_unmap_gfn_range,
761                 .on_lock        = kvm_mmu_invalidate_begin,
762                 .flush_on_ret   = true,
763                 .may_block      = mmu_notifier_range_blockable(range),
764         };
765 
766         trace_kvm_unmap_hva_range(range->start, range->end);
767 
768         /*
769          * Prevent memslot modification between range_start() and range_end()
770          * so that conditionally locking provides the same result in both
771          * functions.  Without that guarantee, the mmu_invalidate_in_progress
772          * adjustments will be imbalanced.
773          *
774          * Pairs with the decrement in range_end().
775          */
776         spin_lock(&kvm->mn_invalidate_lock);
777         kvm->mn_active_invalidate_count++;
778         spin_unlock(&kvm->mn_invalidate_lock);
779 
780         /*
781          * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
782          * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
783          * each cache's lock.  There are relatively few caches in existence at
784          * any given time, and the caches themselves can check for hva overlap,
785          * i.e. don't need to rely on memslot overlap checks for performance.
786          * Because this runs without holding mmu_lock, the pfn caches must use
787          * mn_active_invalidate_count (see above) instead of
788          * mmu_invalidate_in_progress.
789          */
790         gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end);
791 
792         /*
793          * If one or more memslots were found and thus zapped, notify arch code
794          * that guest memory has been reclaimed.  This needs to be done *after*
795          * dropping mmu_lock, as x86's reclaim path is slooooow.
796          */
797         if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot)
798                 kvm_arch_guest_memory_reclaimed(kvm);
799 
800         return 0;
801 }
802 
803 void kvm_mmu_invalidate_end(struct kvm *kvm)
804 {
805         lockdep_assert_held_write(&kvm->mmu_lock);
806 
807         /*
808          * This sequence increase will notify the kvm page fault that
809          * the page that is going to be mapped in the spte could have
810          * been freed.
811          */
812         kvm->mmu_invalidate_seq++;
813         smp_wmb();
814         /*
815          * The above sequence increase must be visible before the
816          * below count decrease, which is ensured by the smp_wmb above
817          * in conjunction with the smp_rmb in mmu_invalidate_retry().
818          */
819         kvm->mmu_invalidate_in_progress--;
820         KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
821 
822         /*
823          * Assert that at least one range was added between start() and end().
824          * Not adding a range isn't fatal, but it is a KVM bug.
825          */
826         WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
827 }
828 
829 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
830                                         const struct mmu_notifier_range *range)
831 {
832         struct kvm *kvm = mmu_notifier_to_kvm(mn);
833         const struct kvm_mmu_notifier_range hva_range = {
834                 .start          = range->start,
835                 .end            = range->end,
836                 .handler        = (void *)kvm_null_fn,
837                 .on_lock        = kvm_mmu_invalidate_end,
838                 .flush_on_ret   = false,
839                 .may_block      = mmu_notifier_range_blockable(range),
840         };
841         bool wake;
842 
843         __kvm_handle_hva_range(kvm, &hva_range);
844 
845         /* Pairs with the increment in range_start(). */
846         spin_lock(&kvm->mn_invalidate_lock);
847         if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count))
848                 --kvm->mn_active_invalidate_count;
849         wake = !kvm->mn_active_invalidate_count;
850         spin_unlock(&kvm->mn_invalidate_lock);
851 
852         /*
853          * There can only be one waiter, since the wait happens under
854          * slots_lock.
855          */
856         if (wake)
857                 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
858 }
859 
860 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
861                                               struct mm_struct *mm,
862                                               unsigned long start,
863                                               unsigned long end)
864 {
865         trace_kvm_age_hva(start, end);
866 
867         return kvm_handle_hva_range(mn, start, end, kvm_age_gfn);
868 }
869 
870 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
871                                         struct mm_struct *mm,
872                                         unsigned long start,
873                                         unsigned long end)
874 {
875         trace_kvm_age_hva(start, end);
876 
877         /*
878          * Even though we do not flush TLB, this will still adversely
879          * affect performance on pre-Haswell Intel EPT, where there is
880          * no EPT Access Bit to clear so that we have to tear down EPT
881          * tables instead. If we find this unacceptable, we can always
882          * add a parameter to kvm_age_hva so that it effectively doesn't
883          * do anything on clear_young.
884          *
885          * Also note that currently we never issue secondary TLB flushes
886          * from clear_young, leaving this job up to the regular system
887          * cadence. If we find this inaccurate, we might come up with a
888          * more sophisticated heuristic later.
889          */
890         return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
891 }
892 
893 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
894                                        struct mm_struct *mm,
895                                        unsigned long address)
896 {
897         trace_kvm_test_age_hva(address);
898 
899         return kvm_handle_hva_range_no_flush(mn, address, address + 1,
900                                              kvm_test_age_gfn);
901 }
902 
903 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
904                                      struct mm_struct *mm)
905 {
906         struct kvm *kvm = mmu_notifier_to_kvm(mn);
907         int idx;
908 
909         idx = srcu_read_lock(&kvm->srcu);
910         kvm_flush_shadow_all(kvm);
911         srcu_read_unlock(&kvm->srcu, idx);
912 }
913 
914 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
915         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
916         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
917         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
918         .clear_young            = kvm_mmu_notifier_clear_young,
919         .test_young             = kvm_mmu_notifier_test_young,
920         .release                = kvm_mmu_notifier_release,
921 };
922 
923 static int kvm_init_mmu_notifier(struct kvm *kvm)
924 {
925         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
926         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
927 }
928 
929 #else  /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
930 
931 static int kvm_init_mmu_notifier(struct kvm *kvm)
932 {
933         return 0;
934 }
935 
936 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
937 
938 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
939 static int kvm_pm_notifier_call(struct notifier_block *bl,
940                                 unsigned long state,
941                                 void *unused)
942 {
943         struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
944 
945         return kvm_arch_pm_notifier(kvm, state);
946 }
947 
948 static void kvm_init_pm_notifier(struct kvm *kvm)
949 {
950         kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
951         /* Suspend KVM before we suspend ftrace, RCU, etc. */
952         kvm->pm_notifier.priority = INT_MAX;
953         register_pm_notifier(&kvm->pm_notifier);
954 }
955 
956 static void kvm_destroy_pm_notifier(struct kvm *kvm)
957 {
958         unregister_pm_notifier(&kvm->pm_notifier);
959 }
960 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
961 static void kvm_init_pm_notifier(struct kvm *kvm)
962 {
963 }
964 
965 static void kvm_destroy_pm_notifier(struct kvm *kvm)
966 {
967 }
968 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
969 
970 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
971 {
972         if (!memslot->dirty_bitmap)
973                 return;
974 
975         vfree(memslot->dirty_bitmap);
976         memslot->dirty_bitmap = NULL;
977 }
978 
979 /* This does not remove the slot from struct kvm_memslots data structures */
980 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
981 {
982         if (slot->flags & KVM_MEM_GUEST_MEMFD)
983                 kvm_gmem_unbind(slot);
984 
985         kvm_destroy_dirty_bitmap(slot);
986 
987         kvm_arch_free_memslot(kvm, slot);
988 
989         kfree(slot);
990 }
991 
992 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
993 {
994         struct hlist_node *idnode;
995         struct kvm_memory_slot *memslot;
996         int bkt;
997 
998         /*
999          * The same memslot objects live in both active and inactive sets,
1000          * arbitrarily free using index '1' so the second invocation of this
1001          * function isn't operating over a structure with dangling pointers
1002          * (even though this function isn't actually touching them).
1003          */
1004         if (!slots->node_idx)
1005                 return;
1006 
1007         hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
1008                 kvm_free_memslot(kvm, memslot);
1009 }
1010 
1011 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
1012 {
1013         switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
1014         case KVM_STATS_TYPE_INSTANT:
1015                 return 0444;
1016         case KVM_STATS_TYPE_CUMULATIVE:
1017         case KVM_STATS_TYPE_PEAK:
1018         default:
1019                 return 0644;
1020         }
1021 }
1022 
1023 
1024 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1025 {
1026         int i;
1027         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1028                                       kvm_vcpu_stats_header.num_desc;
1029 
1030         if (IS_ERR(kvm->debugfs_dentry))
1031                 return;
1032 
1033         debugfs_remove_recursive(kvm->debugfs_dentry);
1034 
1035         if (kvm->debugfs_stat_data) {
1036                 for (i = 0; i < kvm_debugfs_num_entries; i++)
1037                         kfree(kvm->debugfs_stat_data[i]);
1038                 kfree(kvm->debugfs_stat_data);
1039         }
1040 }
1041 
1042 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1043 {
1044         static DEFINE_MUTEX(kvm_debugfs_lock);
1045         struct dentry *dent;
1046         char dir_name[ITOA_MAX_LEN * 2];
1047         struct kvm_stat_data *stat_data;
1048         const struct _kvm_stats_desc *pdesc;
1049         int i, ret = -ENOMEM;
1050         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1051                                       kvm_vcpu_stats_header.num_desc;
1052 
1053         if (!debugfs_initialized())
1054                 return 0;
1055 
1056         snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1057         mutex_lock(&kvm_debugfs_lock);
1058         dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1059         if (dent) {
1060                 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1061                 dput(dent);
1062                 mutex_unlock(&kvm_debugfs_lock);
1063                 return 0;
1064         }
1065         dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1066         mutex_unlock(&kvm_debugfs_lock);
1067         if (IS_ERR(dent))
1068                 return 0;
1069 
1070         kvm->debugfs_dentry = dent;
1071         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1072                                          sizeof(*kvm->debugfs_stat_data),
1073                                          GFP_KERNEL_ACCOUNT);
1074         if (!kvm->debugfs_stat_data)
1075                 goto out_err;
1076 
1077         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1078                 pdesc = &kvm_vm_stats_desc[i];
1079                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1080                 if (!stat_data)
1081                         goto out_err;
1082 
1083                 stat_data->kvm = kvm;
1084                 stat_data->desc = pdesc;
1085                 stat_data->kind = KVM_STAT_VM;
1086                 kvm->debugfs_stat_data[i] = stat_data;
1087                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1088                                     kvm->debugfs_dentry, stat_data,
1089                                     &stat_fops_per_vm);
1090         }
1091 
1092         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1093                 pdesc = &kvm_vcpu_stats_desc[i];
1094                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1095                 if (!stat_data)
1096                         goto out_err;
1097 
1098                 stat_data->kvm = kvm;
1099                 stat_data->desc = pdesc;
1100                 stat_data->kind = KVM_STAT_VCPU;
1101                 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1102                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1103                                     kvm->debugfs_dentry, stat_data,
1104                                     &stat_fops_per_vm);
1105         }
1106 
1107         kvm_arch_create_vm_debugfs(kvm);
1108         return 0;
1109 out_err:
1110         kvm_destroy_vm_debugfs(kvm);
1111         return ret;
1112 }
1113 
1114 /*
1115  * Called after the VM is otherwise initialized, but just before adding it to
1116  * the vm_list.
1117  */
1118 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1119 {
1120         return 0;
1121 }
1122 
1123 /*
1124  * Called just after removing the VM from the vm_list, but before doing any
1125  * other destruction.
1126  */
1127 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1128 {
1129 }
1130 
1131 /*
1132  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1133  * be setup already, so we can create arch-specific debugfs entries under it.
1134  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1135  * a per-arch destroy interface is not needed.
1136  */
1137 void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1138 {
1139 }
1140 
1141 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1142 {
1143         struct kvm *kvm = kvm_arch_alloc_vm();
1144         struct kvm_memslots *slots;
1145         int r, i, j;
1146 
1147         if (!kvm)
1148                 return ERR_PTR(-ENOMEM);
1149 
1150         KVM_MMU_LOCK_INIT(kvm);
1151         mmgrab(current->mm);
1152         kvm->mm = current->mm;
1153         kvm_eventfd_init(kvm);
1154         mutex_init(&kvm->lock);
1155         mutex_init(&kvm->irq_lock);
1156         mutex_init(&kvm->slots_lock);
1157         mutex_init(&kvm->slots_arch_lock);
1158         spin_lock_init(&kvm->mn_invalidate_lock);
1159         rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1160         xa_init(&kvm->vcpu_array);
1161 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1162         xa_init(&kvm->mem_attr_array);
1163 #endif
1164 
1165         INIT_LIST_HEAD(&kvm->gpc_list);
1166         spin_lock_init(&kvm->gpc_lock);
1167 
1168         INIT_LIST_HEAD(&kvm->devices);
1169         kvm->max_vcpus = KVM_MAX_VCPUS;
1170 
1171         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1172 
1173         /*
1174          * Force subsequent debugfs file creations to fail if the VM directory
1175          * is not created (by kvm_create_vm_debugfs()).
1176          */
1177         kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1178 
1179         snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1180                  task_pid_nr(current));
1181 
1182         r = -ENOMEM;
1183         if (init_srcu_struct(&kvm->srcu))
1184                 goto out_err_no_srcu;
1185         if (init_srcu_struct(&kvm->irq_srcu))
1186                 goto out_err_no_irq_srcu;
1187 
1188         r = kvm_init_irq_routing(kvm);
1189         if (r)
1190                 goto out_err_no_irq_routing;
1191 
1192         refcount_set(&kvm->users_count, 1);
1193 
1194         for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1195                 for (j = 0; j < 2; j++) {
1196                         slots = &kvm->__memslots[i][j];
1197 
1198                         atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1199                         slots->hva_tree = RB_ROOT_CACHED;
1200                         slots->gfn_tree = RB_ROOT;
1201                         hash_init(slots->id_hash);
1202                         slots->node_idx = j;
1203 
1204                         /* Generations must be different for each address space. */
1205                         slots->generation = i;
1206                 }
1207 
1208                 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1209         }
1210 
1211         r = -ENOMEM;
1212         for (i = 0; i < KVM_NR_BUSES; i++) {
1213                 rcu_assign_pointer(kvm->buses[i],
1214                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1215                 if (!kvm->buses[i])
1216                         goto out_err_no_arch_destroy_vm;
1217         }
1218 
1219         r = kvm_arch_init_vm(kvm, type);
1220         if (r)
1221                 goto out_err_no_arch_destroy_vm;
1222 
1223         r = hardware_enable_all();
1224         if (r)
1225                 goto out_err_no_disable;
1226 
1227 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1228         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1229 #endif
1230 
1231         r = kvm_init_mmu_notifier(kvm);
1232         if (r)
1233                 goto out_err_no_mmu_notifier;
1234 
1235         r = kvm_coalesced_mmio_init(kvm);
1236         if (r < 0)
1237                 goto out_no_coalesced_mmio;
1238 
1239         r = kvm_create_vm_debugfs(kvm, fdname);
1240         if (r)
1241                 goto out_err_no_debugfs;
1242 
1243         r = kvm_arch_post_init_vm(kvm);
1244         if (r)
1245                 goto out_err;
1246 
1247         mutex_lock(&kvm_lock);
1248         list_add(&kvm->vm_list, &vm_list);
1249         mutex_unlock(&kvm_lock);
1250 
1251         preempt_notifier_inc();
1252         kvm_init_pm_notifier(kvm);
1253 
1254         return kvm;
1255 
1256 out_err:
1257         kvm_destroy_vm_debugfs(kvm);
1258 out_err_no_debugfs:
1259         kvm_coalesced_mmio_free(kvm);
1260 out_no_coalesced_mmio:
1261 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1262         if (kvm->mmu_notifier.ops)
1263                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1264 #endif
1265 out_err_no_mmu_notifier:
1266         hardware_disable_all();
1267 out_err_no_disable:
1268         kvm_arch_destroy_vm(kvm);
1269 out_err_no_arch_destroy_vm:
1270         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1271         for (i = 0; i < KVM_NR_BUSES; i++)
1272                 kfree(kvm_get_bus(kvm, i));
1273         kvm_free_irq_routing(kvm);
1274 out_err_no_irq_routing:
1275         cleanup_srcu_struct(&kvm->irq_srcu);
1276 out_err_no_irq_srcu:
1277         cleanup_srcu_struct(&kvm->srcu);
1278 out_err_no_srcu:
1279         kvm_arch_free_vm(kvm);
1280         mmdrop(current->mm);
1281         return ERR_PTR(r);
1282 }
1283 
1284 static void kvm_destroy_devices(struct kvm *kvm)
1285 {
1286         struct kvm_device *dev, *tmp;
1287 
1288         /*
1289          * We do not need to take the kvm->lock here, because nobody else
1290          * has a reference to the struct kvm at this point and therefore
1291          * cannot access the devices list anyhow.
1292          *
1293          * The device list is generally managed as an rculist, but list_del()
1294          * is used intentionally here. If a bug in KVM introduced a reader that
1295          * was not backed by a reference on the kvm struct, the hope is that
1296          * it'd consume the poisoned forward pointer instead of suffering a
1297          * use-after-free, even though this cannot be guaranteed.
1298          */
1299         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1300                 list_del(&dev->vm_node);
1301                 dev->ops->destroy(dev);
1302         }
1303 }
1304 
1305 static void kvm_destroy_vm(struct kvm *kvm)
1306 {
1307         int i;
1308         struct mm_struct *mm = kvm->mm;
1309 
1310         kvm_destroy_pm_notifier(kvm);
1311         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1312         kvm_destroy_vm_debugfs(kvm);
1313         kvm_arch_sync_events(kvm);
1314         mutex_lock(&kvm_lock);
1315         list_del(&kvm->vm_list);
1316         mutex_unlock(&kvm_lock);
1317         kvm_arch_pre_destroy_vm(kvm);
1318 
1319         kvm_free_irq_routing(kvm);
1320         for (i = 0; i < KVM_NR_BUSES; i++) {
1321                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1322 
1323                 if (bus)
1324                         kvm_io_bus_destroy(bus);
1325                 kvm->buses[i] = NULL;
1326         }
1327         kvm_coalesced_mmio_free(kvm);
1328 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1329         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1330         /*
1331          * At this point, pending calls to invalidate_range_start()
1332          * have completed but no more MMU notifiers will run, so
1333          * mn_active_invalidate_count may remain unbalanced.
1334          * No threads can be waiting in kvm_swap_active_memslots() as the
1335          * last reference on KVM has been dropped, but freeing
1336          * memslots would deadlock without this manual intervention.
1337          *
1338          * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1339          * notifier between a start() and end(), then there shouldn't be any
1340          * in-progress invalidations.
1341          */
1342         WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1343         if (kvm->mn_active_invalidate_count)
1344                 kvm->mn_active_invalidate_count = 0;
1345         else
1346                 WARN_ON(kvm->mmu_invalidate_in_progress);
1347 #else
1348         kvm_flush_shadow_all(kvm);
1349 #endif
1350         kvm_arch_destroy_vm(kvm);
1351         kvm_destroy_devices(kvm);
1352         for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1353                 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1354                 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1355         }
1356         cleanup_srcu_struct(&kvm->irq_srcu);
1357         cleanup_srcu_struct(&kvm->srcu);
1358 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1359         xa_destroy(&kvm->mem_attr_array);
1360 #endif
1361         kvm_arch_free_vm(kvm);
1362         preempt_notifier_dec();
1363         hardware_disable_all();
1364         mmdrop(mm);
1365 }
1366 
1367 void kvm_get_kvm(struct kvm *kvm)
1368 {
1369         refcount_inc(&kvm->users_count);
1370 }
1371 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1372 
1373 /*
1374  * Make sure the vm is not during destruction, which is a safe version of
1375  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1376  */
1377 bool kvm_get_kvm_safe(struct kvm *kvm)
1378 {
1379         return refcount_inc_not_zero(&kvm->users_count);
1380 }
1381 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1382 
1383 void kvm_put_kvm(struct kvm *kvm)
1384 {
1385         if (refcount_dec_and_test(&kvm->users_count))
1386                 kvm_destroy_vm(kvm);
1387 }
1388 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1389 
1390 /*
1391  * Used to put a reference that was taken on behalf of an object associated
1392  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1393  * of the new file descriptor fails and the reference cannot be transferred to
1394  * its final owner.  In such cases, the caller is still actively using @kvm and
1395  * will fail miserably if the refcount unexpectedly hits zero.
1396  */
1397 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1398 {
1399         WARN_ON(refcount_dec_and_test(&kvm->users_count));
1400 }
1401 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1402 
1403 static int kvm_vm_release(struct inode *inode, struct file *filp)
1404 {
1405         struct kvm *kvm = filp->private_data;
1406 
1407         kvm_irqfd_release(kvm);
1408 
1409         kvm_put_kvm(kvm);
1410         return 0;
1411 }
1412 
1413 /*
1414  * Allocation size is twice as large as the actual dirty bitmap size.
1415  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1416  */
1417 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1418 {
1419         unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1420 
1421         memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1422         if (!memslot->dirty_bitmap)
1423                 return -ENOMEM;
1424 
1425         return 0;
1426 }
1427 
1428 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1429 {
1430         struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1431         int node_idx_inactive = active->node_idx ^ 1;
1432 
1433         return &kvm->__memslots[as_id][node_idx_inactive];
1434 }
1435 
1436 /*
1437  * Helper to get the address space ID when one of memslot pointers may be NULL.
1438  * This also serves as a sanity that at least one of the pointers is non-NULL,
1439  * and that their address space IDs don't diverge.
1440  */
1441 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1442                                   struct kvm_memory_slot *b)
1443 {
1444         if (WARN_ON_ONCE(!a && !b))
1445                 return 0;
1446 
1447         if (!a)
1448                 return b->as_id;
1449         if (!b)
1450                 return a->as_id;
1451 
1452         WARN_ON_ONCE(a->as_id != b->as_id);
1453         return a->as_id;
1454 }
1455 
1456 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1457                                 struct kvm_memory_slot *slot)
1458 {
1459         struct rb_root *gfn_tree = &slots->gfn_tree;
1460         struct rb_node **node, *parent;
1461         int idx = slots->node_idx;
1462 
1463         parent = NULL;
1464         for (node = &gfn_tree->rb_node; *node; ) {
1465                 struct kvm_memory_slot *tmp;
1466 
1467                 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1468                 parent = *node;
1469                 if (slot->base_gfn < tmp->base_gfn)
1470                         node = &(*node)->rb_left;
1471                 else if (slot->base_gfn > tmp->base_gfn)
1472                         node = &(*node)->rb_right;
1473                 else
1474                         BUG();
1475         }
1476 
1477         rb_link_node(&slot->gfn_node[idx], parent, node);
1478         rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1479 }
1480 
1481 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1482                                struct kvm_memory_slot *slot)
1483 {
1484         rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1485 }
1486 
1487 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1488                                  struct kvm_memory_slot *old,
1489                                  struct kvm_memory_slot *new)
1490 {
1491         int idx = slots->node_idx;
1492 
1493         WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1494 
1495         rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1496                         &slots->gfn_tree);
1497 }
1498 
1499 /*
1500  * Replace @old with @new in the inactive memslots.
1501  *
1502  * With NULL @old this simply adds @new.
1503  * With NULL @new this simply removes @old.
1504  *
1505  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1506  * appropriately.
1507  */
1508 static void kvm_replace_memslot(struct kvm *kvm,
1509                                 struct kvm_memory_slot *old,
1510                                 struct kvm_memory_slot *new)
1511 {
1512         int as_id = kvm_memslots_get_as_id(old, new);
1513         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1514         int idx = slots->node_idx;
1515 
1516         if (old) {
1517                 hash_del(&old->id_node[idx]);
1518                 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1519 
1520                 if ((long)old == atomic_long_read(&slots->last_used_slot))
1521                         atomic_long_set(&slots->last_used_slot, (long)new);
1522 
1523                 if (!new) {
1524                         kvm_erase_gfn_node(slots, old);
1525                         return;
1526                 }
1527         }
1528 
1529         /*
1530          * Initialize @new's hva range.  Do this even when replacing an @old
1531          * slot, kvm_copy_memslot() deliberately does not touch node data.
1532          */
1533         new->hva_node[idx].start = new->userspace_addr;
1534         new->hva_node[idx].last = new->userspace_addr +
1535                                   (new->npages << PAGE_SHIFT) - 1;
1536 
1537         /*
1538          * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1539          * hva_node needs to be swapped with remove+insert even though hva can't
1540          * change when replacing an existing slot.
1541          */
1542         hash_add(slots->id_hash, &new->id_node[idx], new->id);
1543         interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1544 
1545         /*
1546          * If the memslot gfn is unchanged, rb_replace_node() can be used to
1547          * switch the node in the gfn tree instead of removing the old and
1548          * inserting the new as two separate operations. Replacement is a
1549          * single O(1) operation versus two O(log(n)) operations for
1550          * remove+insert.
1551          */
1552         if (old && old->base_gfn == new->base_gfn) {
1553                 kvm_replace_gfn_node(slots, old, new);
1554         } else {
1555                 if (old)
1556                         kvm_erase_gfn_node(slots, old);
1557                 kvm_insert_gfn_node(slots, new);
1558         }
1559 }
1560 
1561 /*
1562  * Flags that do not access any of the extra space of struct
1563  * kvm_userspace_memory_region2.  KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1564  * only allows these.
1565  */
1566 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1567         (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1568 
1569 static int check_memory_region_flags(struct kvm *kvm,
1570                                      const struct kvm_userspace_memory_region2 *mem)
1571 {
1572         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1573 
1574         if (kvm_arch_has_private_mem(kvm))
1575                 valid_flags |= KVM_MEM_GUEST_MEMFD;
1576 
1577         /* Dirty logging private memory is not currently supported. */
1578         if (mem->flags & KVM_MEM_GUEST_MEMFD)
1579                 valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1580 
1581         /*
1582          * GUEST_MEMFD is incompatible with read-only memslots, as writes to
1583          * read-only memslots have emulated MMIO, not page fault, semantics,
1584          * and KVM doesn't allow emulated MMIO for private memory.
1585          */
1586         if (kvm_arch_has_readonly_mem(kvm) &&
1587             !(mem->flags & KVM_MEM_GUEST_MEMFD))
1588                 valid_flags |= KVM_MEM_READONLY;
1589 
1590         if (mem->flags & ~valid_flags)
1591                 return -EINVAL;
1592 
1593         return 0;
1594 }
1595 
1596 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1597 {
1598         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1599 
1600         /* Grab the generation from the activate memslots. */
1601         u64 gen = __kvm_memslots(kvm, as_id)->generation;
1602 
1603         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1604         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1605 
1606         /*
1607          * Do not store the new memslots while there are invalidations in
1608          * progress, otherwise the locking in invalidate_range_start and
1609          * invalidate_range_end will be unbalanced.
1610          */
1611         spin_lock(&kvm->mn_invalidate_lock);
1612         prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1613         while (kvm->mn_active_invalidate_count) {
1614                 set_current_state(TASK_UNINTERRUPTIBLE);
1615                 spin_unlock(&kvm->mn_invalidate_lock);
1616                 schedule();
1617                 spin_lock(&kvm->mn_invalidate_lock);
1618         }
1619         finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1620         rcu_assign_pointer(kvm->memslots[as_id], slots);
1621         spin_unlock(&kvm->mn_invalidate_lock);
1622 
1623         /*
1624          * Acquired in kvm_set_memslot. Must be released before synchronize
1625          * SRCU below in order to avoid deadlock with another thread
1626          * acquiring the slots_arch_lock in an srcu critical section.
1627          */
1628         mutex_unlock(&kvm->slots_arch_lock);
1629 
1630         synchronize_srcu_expedited(&kvm->srcu);
1631 
1632         /*
1633          * Increment the new memslot generation a second time, dropping the
1634          * update in-progress flag and incrementing the generation based on
1635          * the number of address spaces.  This provides a unique and easily
1636          * identifiable generation number while the memslots are in flux.
1637          */
1638         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1639 
1640         /*
1641          * Generations must be unique even across address spaces.  We do not need
1642          * a global counter for that, instead the generation space is evenly split
1643          * across address spaces.  For example, with two address spaces, address
1644          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1645          * use generations 1, 3, 5, ...
1646          */
1647         gen += kvm_arch_nr_memslot_as_ids(kvm);
1648 
1649         kvm_arch_memslots_updated(kvm, gen);
1650 
1651         slots->generation = gen;
1652 }
1653 
1654 static int kvm_prepare_memory_region(struct kvm *kvm,
1655                                      const struct kvm_memory_slot *old,
1656                                      struct kvm_memory_slot *new,
1657                                      enum kvm_mr_change change)
1658 {
1659         int r;
1660 
1661         /*
1662          * If dirty logging is disabled, nullify the bitmap; the old bitmap
1663          * will be freed on "commit".  If logging is enabled in both old and
1664          * new, reuse the existing bitmap.  If logging is enabled only in the
1665          * new and KVM isn't using a ring buffer, allocate and initialize a
1666          * new bitmap.
1667          */
1668         if (change != KVM_MR_DELETE) {
1669                 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1670                         new->dirty_bitmap = NULL;
1671                 else if (old && old->dirty_bitmap)
1672                         new->dirty_bitmap = old->dirty_bitmap;
1673                 else if (kvm_use_dirty_bitmap(kvm)) {
1674                         r = kvm_alloc_dirty_bitmap(new);
1675                         if (r)
1676                                 return r;
1677 
1678                         if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1679                                 bitmap_set(new->dirty_bitmap, 0, new->npages);
1680                 }
1681         }
1682 
1683         r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1684 
1685         /* Free the bitmap on failure if it was allocated above. */
1686         if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1687                 kvm_destroy_dirty_bitmap(new);
1688 
1689         return r;
1690 }
1691 
1692 static void kvm_commit_memory_region(struct kvm *kvm,
1693                                      struct kvm_memory_slot *old,
1694                                      const struct kvm_memory_slot *new,
1695                                      enum kvm_mr_change change)
1696 {
1697         int old_flags = old ? old->flags : 0;
1698         int new_flags = new ? new->flags : 0;
1699         /*
1700          * Update the total number of memslot pages before calling the arch
1701          * hook so that architectures can consume the result directly.
1702          */
1703         if (change == KVM_MR_DELETE)
1704                 kvm->nr_memslot_pages -= old->npages;
1705         else if (change == KVM_MR_CREATE)
1706                 kvm->nr_memslot_pages += new->npages;
1707 
1708         if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1709                 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1710                 atomic_set(&kvm->nr_memslots_dirty_logging,
1711                            atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1712         }
1713 
1714         kvm_arch_commit_memory_region(kvm, old, new, change);
1715 
1716         switch (change) {
1717         case KVM_MR_CREATE:
1718                 /* Nothing more to do. */
1719                 break;
1720         case KVM_MR_DELETE:
1721                 /* Free the old memslot and all its metadata. */
1722                 kvm_free_memslot(kvm, old);
1723                 break;
1724         case KVM_MR_MOVE:
1725         case KVM_MR_FLAGS_ONLY:
1726                 /*
1727                  * Free the dirty bitmap as needed; the below check encompasses
1728                  * both the flags and whether a ring buffer is being used)
1729                  */
1730                 if (old->dirty_bitmap && !new->dirty_bitmap)
1731                         kvm_destroy_dirty_bitmap(old);
1732 
1733                 /*
1734                  * The final quirk.  Free the detached, old slot, but only its
1735                  * memory, not any metadata.  Metadata, including arch specific
1736                  * data, may be reused by @new.
1737                  */
1738                 kfree(old);
1739                 break;
1740         default:
1741                 BUG();
1742         }
1743 }
1744 
1745 /*
1746  * Activate @new, which must be installed in the inactive slots by the caller,
1747  * by swapping the active slots and then propagating @new to @old once @old is
1748  * unreachable and can be safely modified.
1749  *
1750  * With NULL @old this simply adds @new to @active (while swapping the sets).
1751  * With NULL @new this simply removes @old from @active and frees it
1752  * (while also swapping the sets).
1753  */
1754 static void kvm_activate_memslot(struct kvm *kvm,
1755                                  struct kvm_memory_slot *old,
1756                                  struct kvm_memory_slot *new)
1757 {
1758         int as_id = kvm_memslots_get_as_id(old, new);
1759 
1760         kvm_swap_active_memslots(kvm, as_id);
1761 
1762         /* Propagate the new memslot to the now inactive memslots. */
1763         kvm_replace_memslot(kvm, old, new);
1764 }
1765 
1766 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1767                              const struct kvm_memory_slot *src)
1768 {
1769         dest->base_gfn = src->base_gfn;
1770         dest->npages = src->npages;
1771         dest->dirty_bitmap = src->dirty_bitmap;
1772         dest->arch = src->arch;
1773         dest->userspace_addr = src->userspace_addr;
1774         dest->flags = src->flags;
1775         dest->id = src->id;
1776         dest->as_id = src->as_id;
1777 }
1778 
1779 static void kvm_invalidate_memslot(struct kvm *kvm,
1780                                    struct kvm_memory_slot *old,
1781                                    struct kvm_memory_slot *invalid_slot)
1782 {
1783         /*
1784          * Mark the current slot INVALID.  As with all memslot modifications,
1785          * this must be done on an unreachable slot to avoid modifying the
1786          * current slot in the active tree.
1787          */
1788         kvm_copy_memslot(invalid_slot, old);
1789         invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1790         kvm_replace_memslot(kvm, old, invalid_slot);
1791 
1792         /*
1793          * Activate the slot that is now marked INVALID, but don't propagate
1794          * the slot to the now inactive slots. The slot is either going to be
1795          * deleted or recreated as a new slot.
1796          */
1797         kvm_swap_active_memslots(kvm, old->as_id);
1798 
1799         /*
1800          * From this point no new shadow pages pointing to a deleted, or moved,
1801          * memslot will be created.  Validation of sp->gfn happens in:
1802          *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1803          *      - kvm_is_visible_gfn (mmu_check_root)
1804          */
1805         kvm_arch_flush_shadow_memslot(kvm, old);
1806         kvm_arch_guest_memory_reclaimed(kvm);
1807 
1808         /* Was released by kvm_swap_active_memslots(), reacquire. */
1809         mutex_lock(&kvm->slots_arch_lock);
1810 
1811         /*
1812          * Copy the arch-specific field of the newly-installed slot back to the
1813          * old slot as the arch data could have changed between releasing
1814          * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1815          * above.  Writers are required to retrieve memslots *after* acquiring
1816          * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1817          */
1818         old->arch = invalid_slot->arch;
1819 }
1820 
1821 static void kvm_create_memslot(struct kvm *kvm,
1822                                struct kvm_memory_slot *new)
1823 {
1824         /* Add the new memslot to the inactive set and activate. */
1825         kvm_replace_memslot(kvm, NULL, new);
1826         kvm_activate_memslot(kvm, NULL, new);
1827 }
1828 
1829 static void kvm_delete_memslot(struct kvm *kvm,
1830                                struct kvm_memory_slot *old,
1831                                struct kvm_memory_slot *invalid_slot)
1832 {
1833         /*
1834          * Remove the old memslot (in the inactive memslots) by passing NULL as
1835          * the "new" slot, and for the invalid version in the active slots.
1836          */
1837         kvm_replace_memslot(kvm, old, NULL);
1838         kvm_activate_memslot(kvm, invalid_slot, NULL);
1839 }
1840 
1841 static void kvm_move_memslot(struct kvm *kvm,
1842                              struct kvm_memory_slot *old,
1843                              struct kvm_memory_slot *new,
1844                              struct kvm_memory_slot *invalid_slot)
1845 {
1846         /*
1847          * Replace the old memslot in the inactive slots, and then swap slots
1848          * and replace the current INVALID with the new as well.
1849          */
1850         kvm_replace_memslot(kvm, old, new);
1851         kvm_activate_memslot(kvm, invalid_slot, new);
1852 }
1853 
1854 static void kvm_update_flags_memslot(struct kvm *kvm,
1855                                      struct kvm_memory_slot *old,
1856                                      struct kvm_memory_slot *new)
1857 {
1858         /*
1859          * Similar to the MOVE case, but the slot doesn't need to be zapped as
1860          * an intermediate step. Instead, the old memslot is simply replaced
1861          * with a new, updated copy in both memslot sets.
1862          */
1863         kvm_replace_memslot(kvm, old, new);
1864         kvm_activate_memslot(kvm, old, new);
1865 }
1866 
1867 static int kvm_set_memslot(struct kvm *kvm,
1868                            struct kvm_memory_slot *old,
1869                            struct kvm_memory_slot *new,
1870                            enum kvm_mr_change change)
1871 {
1872         struct kvm_memory_slot *invalid_slot;
1873         int r;
1874 
1875         /*
1876          * Released in kvm_swap_active_memslots().
1877          *
1878          * Must be held from before the current memslots are copied until after
1879          * the new memslots are installed with rcu_assign_pointer, then
1880          * released before the synchronize srcu in kvm_swap_active_memslots().
1881          *
1882          * When modifying memslots outside of the slots_lock, must be held
1883          * before reading the pointer to the current memslots until after all
1884          * changes to those memslots are complete.
1885          *
1886          * These rules ensure that installing new memslots does not lose
1887          * changes made to the previous memslots.
1888          */
1889         mutex_lock(&kvm->slots_arch_lock);
1890 
1891         /*
1892          * Invalidate the old slot if it's being deleted or moved.  This is
1893          * done prior to actually deleting/moving the memslot to allow vCPUs to
1894          * continue running by ensuring there are no mappings or shadow pages
1895          * for the memslot when it is deleted/moved.  Without pre-invalidation
1896          * (and without a lock), a window would exist between effecting the
1897          * delete/move and committing the changes in arch code where KVM or a
1898          * guest could access a non-existent memslot.
1899          *
1900          * Modifications are done on a temporary, unreachable slot.  The old
1901          * slot needs to be preserved in case a later step fails and the
1902          * invalidation needs to be reverted.
1903          */
1904         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1905                 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1906                 if (!invalid_slot) {
1907                         mutex_unlock(&kvm->slots_arch_lock);
1908                         return -ENOMEM;
1909                 }
1910                 kvm_invalidate_memslot(kvm, old, invalid_slot);
1911         }
1912 
1913         r = kvm_prepare_memory_region(kvm, old, new, change);
1914         if (r) {
1915                 /*
1916                  * For DELETE/MOVE, revert the above INVALID change.  No
1917                  * modifications required since the original slot was preserved
1918                  * in the inactive slots.  Changing the active memslots also
1919                  * release slots_arch_lock.
1920                  */
1921                 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1922                         kvm_activate_memslot(kvm, invalid_slot, old);
1923                         kfree(invalid_slot);
1924                 } else {
1925                         mutex_unlock(&kvm->slots_arch_lock);
1926                 }
1927                 return r;
1928         }
1929 
1930         /*
1931          * For DELETE and MOVE, the working slot is now active as the INVALID
1932          * version of the old slot.  MOVE is particularly special as it reuses
1933          * the old slot and returns a copy of the old slot (in working_slot).
1934          * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1935          * old slot is detached but otherwise preserved.
1936          */
1937         if (change == KVM_MR_CREATE)
1938                 kvm_create_memslot(kvm, new);
1939         else if (change == KVM_MR_DELETE)
1940                 kvm_delete_memslot(kvm, old, invalid_slot);
1941         else if (change == KVM_MR_MOVE)
1942                 kvm_move_memslot(kvm, old, new, invalid_slot);
1943         else if (change == KVM_MR_FLAGS_ONLY)
1944                 kvm_update_flags_memslot(kvm, old, new);
1945         else
1946                 BUG();
1947 
1948         /* Free the temporary INVALID slot used for DELETE and MOVE. */
1949         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1950                 kfree(invalid_slot);
1951 
1952         /*
1953          * No need to refresh new->arch, changes after dropping slots_arch_lock
1954          * will directly hit the final, active memslot.  Architectures are
1955          * responsible for knowing that new->arch may be stale.
1956          */
1957         kvm_commit_memory_region(kvm, old, new, change);
1958 
1959         return 0;
1960 }
1961 
1962 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1963                                       gfn_t start, gfn_t end)
1964 {
1965         struct kvm_memslot_iter iter;
1966 
1967         kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1968                 if (iter.slot->id != id)
1969                         return true;
1970         }
1971 
1972         return false;
1973 }
1974 
1975 /*
1976  * Allocate some memory and give it an address in the guest physical address
1977  * space.
1978  *
1979  * Discontiguous memory is allowed, mostly for framebuffers.
1980  *
1981  * Must be called holding kvm->slots_lock for write.
1982  */
1983 int __kvm_set_memory_region(struct kvm *kvm,
1984                             const struct kvm_userspace_memory_region2 *mem)
1985 {
1986         struct kvm_memory_slot *old, *new;
1987         struct kvm_memslots *slots;
1988         enum kvm_mr_change change;
1989         unsigned long npages;
1990         gfn_t base_gfn;
1991         int as_id, id;
1992         int r;
1993 
1994         r = check_memory_region_flags(kvm, mem);
1995         if (r)
1996                 return r;
1997 
1998         as_id = mem->slot >> 16;
1999         id = (u16)mem->slot;
2000 
2001         /* General sanity checks */
2002         if ((mem->memory_size & (PAGE_SIZE - 1)) ||
2003             (mem->memory_size != (unsigned long)mem->memory_size))
2004                 return -EINVAL;
2005         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
2006                 return -EINVAL;
2007         /* We can read the guest memory with __xxx_user() later on. */
2008         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
2009             (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
2010              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
2011                         mem->memory_size))
2012                 return -EINVAL;
2013         if (mem->flags & KVM_MEM_GUEST_MEMFD &&
2014             (mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
2015              mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
2016                 return -EINVAL;
2017         if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
2018                 return -EINVAL;
2019         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
2020                 return -EINVAL;
2021         if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
2022                 return -EINVAL;
2023 
2024         slots = __kvm_memslots(kvm, as_id);
2025 
2026         /*
2027          * Note, the old memslot (and the pointer itself!) may be invalidated
2028          * and/or destroyed by kvm_set_memslot().
2029          */
2030         old = id_to_memslot(slots, id);
2031 
2032         if (!mem->memory_size) {
2033                 if (!old || !old->npages)
2034                         return -EINVAL;
2035 
2036                 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
2037                         return -EIO;
2038 
2039                 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
2040         }
2041 
2042         base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
2043         npages = (mem->memory_size >> PAGE_SHIFT);
2044 
2045         if (!old || !old->npages) {
2046                 change = KVM_MR_CREATE;
2047 
2048                 /*
2049                  * To simplify KVM internals, the total number of pages across
2050                  * all memslots must fit in an unsigned long.
2051                  */
2052                 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2053                         return -EINVAL;
2054         } else { /* Modify an existing slot. */
2055                 /* Private memslots are immutable, they can only be deleted. */
2056                 if (mem->flags & KVM_MEM_GUEST_MEMFD)
2057                         return -EINVAL;
2058                 if ((mem->userspace_addr != old->userspace_addr) ||
2059                     (npages != old->npages) ||
2060                     ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2061                         return -EINVAL;
2062 
2063                 if (base_gfn != old->base_gfn)
2064                         change = KVM_MR_MOVE;
2065                 else if (mem->flags != old->flags)
2066                         change = KVM_MR_FLAGS_ONLY;
2067                 else /* Nothing to change. */
2068                         return 0;
2069         }
2070 
2071         if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2072             kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2073                 return -EEXIST;
2074 
2075         /* Allocate a slot that will persist in the memslot. */
2076         new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2077         if (!new)
2078                 return -ENOMEM;
2079 
2080         new->as_id = as_id;
2081         new->id = id;
2082         new->base_gfn = base_gfn;
2083         new->npages = npages;
2084         new->flags = mem->flags;
2085         new->userspace_addr = mem->userspace_addr;
2086         if (mem->flags & KVM_MEM_GUEST_MEMFD) {
2087                 r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
2088                 if (r)
2089                         goto out;
2090         }
2091 
2092         r = kvm_set_memslot(kvm, old, new, change);
2093         if (r)
2094                 goto out_unbind;
2095 
2096         return 0;
2097 
2098 out_unbind:
2099         if (mem->flags & KVM_MEM_GUEST_MEMFD)
2100                 kvm_gmem_unbind(new);
2101 out:
2102         kfree(new);
2103         return r;
2104 }
2105 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2106 
2107 int kvm_set_memory_region(struct kvm *kvm,
2108                           const struct kvm_userspace_memory_region2 *mem)
2109 {
2110         int r;
2111 
2112         mutex_lock(&kvm->slots_lock);
2113         r = __kvm_set_memory_region(kvm, mem);
2114         mutex_unlock(&kvm->slots_lock);
2115         return r;
2116 }
2117 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2118 
2119 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2120                                           struct kvm_userspace_memory_region2 *mem)
2121 {
2122         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2123                 return -EINVAL;
2124 
2125         return kvm_set_memory_region(kvm, mem);
2126 }
2127 
2128 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2129 /**
2130  * kvm_get_dirty_log - get a snapshot of dirty pages
2131  * @kvm:        pointer to kvm instance
2132  * @log:        slot id and address to which we copy the log
2133  * @is_dirty:   set to '1' if any dirty pages were found
2134  * @memslot:    set to the associated memslot, always valid on success
2135  */
2136 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2137                       int *is_dirty, struct kvm_memory_slot **memslot)
2138 {
2139         struct kvm_memslots *slots;
2140         int i, as_id, id;
2141         unsigned long n;
2142         unsigned long any = 0;
2143 
2144         /* Dirty ring tracking may be exclusive to dirty log tracking */
2145         if (!kvm_use_dirty_bitmap(kvm))
2146                 return -ENXIO;
2147 
2148         *memslot = NULL;
2149         *is_dirty = 0;
2150 
2151         as_id = log->slot >> 16;
2152         id = (u16)log->slot;
2153         if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2154                 return -EINVAL;
2155 
2156         slots = __kvm_memslots(kvm, as_id);
2157         *memslot = id_to_memslot(slots, id);
2158         if (!(*memslot) || !(*memslot)->dirty_bitmap)
2159                 return -ENOENT;
2160 
2161         kvm_arch_sync_dirty_log(kvm, *memslot);
2162 
2163         n = kvm_dirty_bitmap_bytes(*memslot);
2164 
2165         for (i = 0; !any && i < n/sizeof(long); ++i)
2166                 any = (*memslot)->dirty_bitmap[i];
2167 
2168         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2169                 return -EFAULT;
2170 
2171         if (any)
2172                 *is_dirty = 1;
2173         return 0;
2174 }
2175 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2176 
2177 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2178 /**
2179  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2180  *      and reenable dirty page tracking for the corresponding pages.
2181  * @kvm:        pointer to kvm instance
2182  * @log:        slot id and address to which we copy the log
2183  *
2184  * We need to keep it in mind that VCPU threads can write to the bitmap
2185  * concurrently. So, to avoid losing track of dirty pages we keep the
2186  * following order:
2187  *
2188  *    1. Take a snapshot of the bit and clear it if needed.
2189  *    2. Write protect the corresponding page.
2190  *    3. Copy the snapshot to the userspace.
2191  *    4. Upon return caller flushes TLB's if needed.
2192  *
2193  * Between 2 and 4, the guest may write to the page using the remaining TLB
2194  * entry.  This is not a problem because the page is reported dirty using
2195  * the snapshot taken before and step 4 ensures that writes done after
2196  * exiting to userspace will be logged for the next call.
2197  *
2198  */
2199 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2200 {
2201         struct kvm_memslots *slots;
2202         struct kvm_memory_slot *memslot;
2203         int i, as_id, id;
2204         unsigned long n;
2205         unsigned long *dirty_bitmap;
2206         unsigned long *dirty_bitmap_buffer;
2207         bool flush;
2208 
2209         /* Dirty ring tracking may be exclusive to dirty log tracking */
2210         if (!kvm_use_dirty_bitmap(kvm))
2211                 return -ENXIO;
2212 
2213         as_id = log->slot >> 16;
2214         id = (u16)log->slot;
2215         if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2216                 return -EINVAL;
2217 
2218         slots = __kvm_memslots(kvm, as_id);
2219         memslot = id_to_memslot(slots, id);
2220         if (!memslot || !memslot->dirty_bitmap)
2221                 return -ENOENT;
2222 
2223         dirty_bitmap = memslot->dirty_bitmap;
2224 
2225         kvm_arch_sync_dirty_log(kvm, memslot);
2226 
2227         n = kvm_dirty_bitmap_bytes(memslot);
2228         flush = false;
2229         if (kvm->manual_dirty_log_protect) {
2230                 /*
2231                  * Unlike kvm_get_dirty_log, we always return false in *flush,
2232                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2233                  * is some code duplication between this function and
2234                  * kvm_get_dirty_log, but hopefully all architecture
2235                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2236                  * can be eliminated.
2237                  */
2238                 dirty_bitmap_buffer = dirty_bitmap;
2239         } else {
2240                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2241                 memset(dirty_bitmap_buffer, 0, n);
2242 
2243                 KVM_MMU_LOCK(kvm);
2244                 for (i = 0; i < n / sizeof(long); i++) {
2245                         unsigned long mask;
2246                         gfn_t offset;
2247 
2248                         if (!dirty_bitmap[i])
2249                                 continue;
2250 
2251                         flush = true;
2252                         mask = xchg(&dirty_bitmap[i], 0);
2253                         dirty_bitmap_buffer[i] = mask;
2254 
2255                         offset = i * BITS_PER_LONG;
2256                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2257                                                                 offset, mask);
2258                 }
2259                 KVM_MMU_UNLOCK(kvm);
2260         }
2261 
2262         if (flush)
2263                 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2264 
2265         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2266                 return -EFAULT;
2267         return 0;
2268 }
2269 
2270 
2271 /**
2272  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2273  * @kvm: kvm instance
2274  * @log: slot id and address to which we copy the log
2275  *
2276  * Steps 1-4 below provide general overview of dirty page logging. See
2277  * kvm_get_dirty_log_protect() function description for additional details.
2278  *
2279  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2280  * always flush the TLB (step 4) even if previous step failed  and the dirty
2281  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2282  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2283  * writes will be marked dirty for next log read.
2284  *
2285  *   1. Take a snapshot of the bit and clear it if needed.
2286  *   2. Write protect the corresponding page.
2287  *   3. Copy the snapshot to the userspace.
2288  *   4. Flush TLB's if needed.
2289  */
2290 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2291                                       struct kvm_dirty_log *log)
2292 {
2293         int r;
2294 
2295         mutex_lock(&kvm->slots_lock);
2296 
2297         r = kvm_get_dirty_log_protect(kvm, log);
2298 
2299         mutex_unlock(&kvm->slots_lock);
2300         return r;
2301 }
2302 
2303 /**
2304  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2305  *      and reenable dirty page tracking for the corresponding pages.
2306  * @kvm:        pointer to kvm instance
2307  * @log:        slot id and address from which to fetch the bitmap of dirty pages
2308  */
2309 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2310                                        struct kvm_clear_dirty_log *log)
2311 {
2312         struct kvm_memslots *slots;
2313         struct kvm_memory_slot *memslot;
2314         int as_id, id;
2315         gfn_t offset;
2316         unsigned long i, n;
2317         unsigned long *dirty_bitmap;
2318         unsigned long *dirty_bitmap_buffer;
2319         bool flush;
2320 
2321         /* Dirty ring tracking may be exclusive to dirty log tracking */
2322         if (!kvm_use_dirty_bitmap(kvm))
2323                 return -ENXIO;
2324 
2325         as_id = log->slot >> 16;
2326         id = (u16)log->slot;
2327         if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2328                 return -EINVAL;
2329 
2330         if (log->first_page & 63)
2331                 return -EINVAL;
2332 
2333         slots = __kvm_memslots(kvm, as_id);
2334         memslot = id_to_memslot(slots, id);
2335         if (!memslot || !memslot->dirty_bitmap)
2336                 return -ENOENT;
2337 
2338         dirty_bitmap = memslot->dirty_bitmap;
2339 
2340         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2341 
2342         if (log->first_page > memslot->npages ||
2343             log->num_pages > memslot->npages - log->first_page ||
2344             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2345             return -EINVAL;
2346 
2347         kvm_arch_sync_dirty_log(kvm, memslot);
2348 
2349         flush = false;
2350         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2351         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2352                 return -EFAULT;
2353 
2354         KVM_MMU_LOCK(kvm);
2355         for (offset = log->first_page, i = offset / BITS_PER_LONG,
2356                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2357              i++, offset += BITS_PER_LONG) {
2358                 unsigned long mask = *dirty_bitmap_buffer++;
2359                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2360                 if (!mask)
2361                         continue;
2362 
2363                 mask &= atomic_long_fetch_andnot(mask, p);
2364 
2365                 /*
2366                  * mask contains the bits that really have been cleared.  This
2367                  * never includes any bits beyond the length of the memslot (if
2368                  * the length is not aligned to 64 pages), therefore it is not
2369                  * a problem if userspace sets them in log->dirty_bitmap.
2370                 */
2371                 if (mask) {
2372                         flush = true;
2373                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2374                                                                 offset, mask);
2375                 }
2376         }
2377         KVM_MMU_UNLOCK(kvm);
2378 
2379         if (flush)
2380                 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2381 
2382         return 0;
2383 }
2384 
2385 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2386                                         struct kvm_clear_dirty_log *log)
2387 {
2388         int r;
2389 
2390         mutex_lock(&kvm->slots_lock);
2391 
2392         r = kvm_clear_dirty_log_protect(kvm, log);
2393 
2394         mutex_unlock(&kvm->slots_lock);
2395         return r;
2396 }
2397 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2398 
2399 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2400 static u64 kvm_supported_mem_attributes(struct kvm *kvm)
2401 {
2402         if (!kvm || kvm_arch_has_private_mem(kvm))
2403                 return KVM_MEMORY_ATTRIBUTE_PRIVATE;
2404 
2405         return 0;
2406 }
2407 
2408 /*
2409  * Returns true if _all_ gfns in the range [@start, @end) have attributes
2410  * such that the bits in @mask match @attrs.
2411  */
2412 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2413                                      unsigned long mask, unsigned long attrs)
2414 {
2415         XA_STATE(xas, &kvm->mem_attr_array, start);
2416         unsigned long index;
2417         void *entry;
2418 
2419         mask &= kvm_supported_mem_attributes(kvm);
2420         if (attrs & ~mask)
2421                 return false;
2422 
2423         if (end == start + 1)
2424                 return (kvm_get_memory_attributes(kvm, start) & mask) == attrs;
2425 
2426         guard(rcu)();
2427         if (!attrs)
2428                 return !xas_find(&xas, end - 1);
2429 
2430         for (index = start; index < end; index++) {
2431                 do {
2432                         entry = xas_next(&xas);
2433                 } while (xas_retry(&xas, entry));
2434 
2435                 if (xas.xa_index != index ||
2436                     (xa_to_value(entry) & mask) != attrs)
2437                         return false;
2438         }
2439 
2440         return true;
2441 }
2442 
2443 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
2444                                                  struct kvm_mmu_notifier_range *range)
2445 {
2446         struct kvm_gfn_range gfn_range;
2447         struct kvm_memory_slot *slot;
2448         struct kvm_memslots *slots;
2449         struct kvm_memslot_iter iter;
2450         bool found_memslot = false;
2451         bool ret = false;
2452         int i;
2453 
2454         gfn_range.arg = range->arg;
2455         gfn_range.may_block = range->may_block;
2456 
2457         for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
2458                 slots = __kvm_memslots(kvm, i);
2459 
2460                 kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
2461                         slot = iter.slot;
2462                         gfn_range.slot = slot;
2463 
2464                         gfn_range.start = max(range->start, slot->base_gfn);
2465                         gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
2466                         if (gfn_range.start >= gfn_range.end)
2467                                 continue;
2468 
2469                         if (!found_memslot) {
2470                                 found_memslot = true;
2471                                 KVM_MMU_LOCK(kvm);
2472                                 if (!IS_KVM_NULL_FN(range->on_lock))
2473                                         range->on_lock(kvm);
2474                         }
2475 
2476                         ret |= range->handler(kvm, &gfn_range);
2477                 }
2478         }
2479 
2480         if (range->flush_on_ret && ret)
2481                 kvm_flush_remote_tlbs(kvm);
2482 
2483         if (found_memslot)
2484                 KVM_MMU_UNLOCK(kvm);
2485 }
2486 
2487 static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
2488                                           struct kvm_gfn_range *range)
2489 {
2490         /*
2491          * Unconditionally add the range to the invalidation set, regardless of
2492          * whether or not the arch callback actually needs to zap SPTEs.  E.g.
2493          * if KVM supports RWX attributes in the future and the attributes are
2494          * going from R=>RW, zapping isn't strictly necessary.  Unconditionally
2495          * adding the range allows KVM to require that MMU invalidations add at
2496          * least one range between begin() and end(), e.g. allows KVM to detect
2497          * bugs where the add() is missed.  Relaxing the rule *might* be safe,
2498          * but it's not obvious that allowing new mappings while the attributes
2499          * are in flux is desirable or worth the complexity.
2500          */
2501         kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
2502 
2503         return kvm_arch_pre_set_memory_attributes(kvm, range);
2504 }
2505 
2506 /* Set @attributes for the gfn range [@start, @end). */
2507 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2508                                      unsigned long attributes)
2509 {
2510         struct kvm_mmu_notifier_range pre_set_range = {
2511                 .start = start,
2512                 .end = end,
2513                 .handler = kvm_pre_set_memory_attributes,
2514                 .on_lock = kvm_mmu_invalidate_begin,
2515                 .flush_on_ret = true,
2516                 .may_block = true,
2517         };
2518         struct kvm_mmu_notifier_range post_set_range = {
2519                 .start = start,
2520                 .end = end,
2521                 .arg.attributes = attributes,
2522                 .handler = kvm_arch_post_set_memory_attributes,
2523                 .on_lock = kvm_mmu_invalidate_end,
2524                 .may_block = true,
2525         };
2526         unsigned long i;
2527         void *entry;
2528         int r = 0;
2529 
2530         entry = attributes ? xa_mk_value(attributes) : NULL;
2531 
2532         mutex_lock(&kvm->slots_lock);
2533 
2534         /* Nothing to do if the entire range as the desired attributes. */
2535         if (kvm_range_has_memory_attributes(kvm, start, end, ~0, attributes))
2536                 goto out_unlock;
2537 
2538         /*
2539          * Reserve memory ahead of time to avoid having to deal with failures
2540          * partway through setting the new attributes.
2541          */
2542         for (i = start; i < end; i++) {
2543                 r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
2544                 if (r)
2545                         goto out_unlock;
2546         }
2547 
2548         kvm_handle_gfn_range(kvm, &pre_set_range);
2549 
2550         for (i = start; i < end; i++) {
2551                 r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
2552                                     GFP_KERNEL_ACCOUNT));
2553                 KVM_BUG_ON(r, kvm);
2554         }
2555 
2556         kvm_handle_gfn_range(kvm, &post_set_range);
2557 
2558 out_unlock:
2559         mutex_unlock(&kvm->slots_lock);
2560 
2561         return r;
2562 }
2563 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
2564                                            struct kvm_memory_attributes *attrs)
2565 {
2566         gfn_t start, end;
2567 
2568         /* flags is currently not used. */
2569         if (attrs->flags)
2570                 return -EINVAL;
2571         if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
2572                 return -EINVAL;
2573         if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
2574                 return -EINVAL;
2575         if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
2576                 return -EINVAL;
2577 
2578         start = attrs->address >> PAGE_SHIFT;
2579         end = (attrs->address + attrs->size) >> PAGE_SHIFT;
2580 
2581         /*
2582          * xarray tracks data using "unsigned long", and as a result so does
2583          * KVM.  For simplicity, supports generic attributes only on 64-bit
2584          * architectures.
2585          */
2586         BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
2587 
2588         return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
2589 }
2590 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2591 
2592 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2593 {
2594         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2595 }
2596 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2597 
2598 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2599 {
2600         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2601         u64 gen = slots->generation;
2602         struct kvm_memory_slot *slot;
2603 
2604         /*
2605          * This also protects against using a memslot from a different address space,
2606          * since different address spaces have different generation numbers.
2607          */
2608         if (unlikely(gen != vcpu->last_used_slot_gen)) {
2609                 vcpu->last_used_slot = NULL;
2610                 vcpu->last_used_slot_gen = gen;
2611         }
2612 
2613         slot = try_get_memslot(vcpu->last_used_slot, gfn);
2614         if (slot)
2615                 return slot;
2616 
2617         /*
2618          * Fall back to searching all memslots. We purposely use
2619          * search_memslots() instead of __gfn_to_memslot() to avoid
2620          * thrashing the VM-wide last_used_slot in kvm_memslots.
2621          */
2622         slot = search_memslots(slots, gfn, false);
2623         if (slot) {
2624                 vcpu->last_used_slot = slot;
2625                 return slot;
2626         }
2627 
2628         return NULL;
2629 }
2630 
2631 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2632 {
2633         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2634 
2635         return kvm_is_visible_memslot(memslot);
2636 }
2637 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2638 
2639 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2640 {
2641         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2642 
2643         return kvm_is_visible_memslot(memslot);
2644 }
2645 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2646 
2647 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2648 {
2649         struct vm_area_struct *vma;
2650         unsigned long addr, size;
2651 
2652         size = PAGE_SIZE;
2653 
2654         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2655         if (kvm_is_error_hva(addr))
2656                 return PAGE_SIZE;
2657 
2658         mmap_read_lock(current->mm);
2659         vma = find_vma(current->mm, addr);
2660         if (!vma)
2661                 goto out;
2662 
2663         size = vma_kernel_pagesize(vma);
2664 
2665 out:
2666         mmap_read_unlock(current->mm);
2667 
2668         return size;
2669 }
2670 
2671 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2672 {
2673         return slot->flags & KVM_MEM_READONLY;
2674 }
2675 
2676 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2677                                        gfn_t *nr_pages, bool write)
2678 {
2679         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2680                 return KVM_HVA_ERR_BAD;
2681 
2682         if (memslot_is_readonly(slot) && write)
2683                 return KVM_HVA_ERR_RO_BAD;
2684 
2685         if (nr_pages)
2686                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2687 
2688         return __gfn_to_hva_memslot(slot, gfn);
2689 }
2690 
2691 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2692                                      gfn_t *nr_pages)
2693 {
2694         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2695 }
2696 
2697 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2698                                         gfn_t gfn)
2699 {
2700         return gfn_to_hva_many(slot, gfn, NULL);
2701 }
2702 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2703 
2704 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2705 {
2706         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2707 }
2708 EXPORT_SYMBOL_GPL(gfn_to_hva);
2709 
2710 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2711 {
2712         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2713 }
2714 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2715 
2716 /*
2717  * Return the hva of a @gfn and the R/W attribute if possible.
2718  *
2719  * @slot: the kvm_memory_slot which contains @gfn
2720  * @gfn: the gfn to be translated
2721  * @writable: used to return the read/write attribute of the @slot if the hva
2722  * is valid and @writable is not NULL
2723  */
2724 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2725                                       gfn_t gfn, bool *writable)
2726 {
2727         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2728 
2729         if (!kvm_is_error_hva(hva) && writable)
2730                 *writable = !memslot_is_readonly(slot);
2731 
2732         return hva;
2733 }
2734 
2735 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2736 {
2737         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2738 
2739         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2740 }
2741 
2742 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2743 {
2744         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2745 
2746         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2747 }
2748 
2749 static inline int check_user_page_hwpoison(unsigned long addr)
2750 {
2751         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2752 
2753         rc = get_user_pages(addr, 1, flags, NULL);
2754         return rc == -EHWPOISON;
2755 }
2756 
2757 /*
2758  * The fast path to get the writable pfn which will be stored in @pfn,
2759  * true indicates success, otherwise false is returned.  It's also the
2760  * only part that runs if we can in atomic context.
2761  */
2762 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2763                             bool *writable, kvm_pfn_t *pfn)
2764 {
2765         struct page *page[1];
2766 
2767         /*
2768          * Fast pin a writable pfn only if it is a write fault request
2769          * or the caller allows to map a writable pfn for a read fault
2770          * request.
2771          */
2772         if (!(write_fault || writable))
2773                 return false;
2774 
2775         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2776                 *pfn = page_to_pfn(page[0]);
2777 
2778                 if (writable)
2779                         *writable = true;
2780                 return true;
2781         }
2782 
2783         return false;
2784 }
2785 
2786 /*
2787  * The slow path to get the pfn of the specified host virtual address,
2788  * 1 indicates success, -errno is returned if error is detected.
2789  */
2790 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2791                            bool interruptible, bool *writable, kvm_pfn_t *pfn)
2792 {
2793         /*
2794          * When a VCPU accesses a page that is not mapped into the secondary
2795          * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2796          * make progress. We always want to honor NUMA hinting faults in that
2797          * case, because GUP usage corresponds to memory accesses from the VCPU.
2798          * Otherwise, we'd not trigger NUMA hinting faults once a page is
2799          * mapped into the secondary MMU and gets accessed by a VCPU.
2800          *
2801          * Note that get_user_page_fast_only() and FOLL_WRITE for now
2802          * implicitly honor NUMA hinting faults and don't need this flag.
2803          */
2804         unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT;
2805         struct page *page;
2806         int npages;
2807 
2808         might_sleep();
2809 
2810         if (writable)
2811                 *writable = write_fault;
2812 
2813         if (write_fault)
2814                 flags |= FOLL_WRITE;
2815         if (async)
2816                 flags |= FOLL_NOWAIT;
2817         if (interruptible)
2818                 flags |= FOLL_INTERRUPTIBLE;
2819 
2820         npages = get_user_pages_unlocked(addr, 1, &page, flags);
2821         if (npages != 1)
2822                 return npages;
2823 
2824         /* map read fault as writable if possible */
2825         if (unlikely(!write_fault) && writable) {
2826                 struct page *wpage;
2827 
2828                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2829                         *writable = true;
2830                         put_page(page);
2831                         page = wpage;
2832                 }
2833         }
2834         *pfn = page_to_pfn(page);
2835         return npages;
2836 }
2837 
2838 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2839 {
2840         if (unlikely(!(vma->vm_flags & VM_READ)))
2841                 return false;
2842 
2843         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2844                 return false;
2845 
2846         return true;
2847 }
2848 
2849 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2850 {
2851         struct page *page = kvm_pfn_to_refcounted_page(pfn);
2852 
2853         if (!page)
2854                 return 1;
2855 
2856         return get_page_unless_zero(page);
2857 }
2858 
2859 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2860                                unsigned long addr, bool write_fault,
2861                                bool *writable, kvm_pfn_t *p_pfn)
2862 {
2863         kvm_pfn_t pfn;
2864         pte_t *ptep;
2865         pte_t pte;
2866         spinlock_t *ptl;
2867         int r;
2868 
2869         r = follow_pte(vma, addr, &ptep, &ptl);
2870         if (r) {
2871                 /*
2872                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2873                  * not call the fault handler, so do it here.
2874                  */
2875                 bool unlocked = false;
2876                 r = fixup_user_fault(current->mm, addr,
2877                                      (write_fault ? FAULT_FLAG_WRITE : 0),
2878                                      &unlocked);
2879                 if (unlocked)
2880                         return -EAGAIN;
2881                 if (r)
2882                         return r;
2883 
2884                 r = follow_pte(vma, addr, &ptep, &ptl);
2885                 if (r)
2886                         return r;
2887         }
2888 
2889         pte = ptep_get(ptep);
2890 
2891         if (write_fault && !pte_write(pte)) {
2892                 pfn = KVM_PFN_ERR_RO_FAULT;
2893                 goto out;
2894         }
2895 
2896         if (writable)
2897                 *writable = pte_write(pte);
2898         pfn = pte_pfn(pte);
2899 
2900         /*
2901          * Get a reference here because callers of *hva_to_pfn* and
2902          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2903          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2904          * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2905          * simply do nothing for reserved pfns.
2906          *
2907          * Whoever called remap_pfn_range is also going to call e.g.
2908          * unmap_mapping_range before the underlying pages are freed,
2909          * causing a call to our MMU notifier.
2910          *
2911          * Certain IO or PFNMAP mappings can be backed with valid
2912          * struct pages, but be allocated without refcounting e.g.,
2913          * tail pages of non-compound higher order allocations, which
2914          * would then underflow the refcount when the caller does the
2915          * required put_page. Don't allow those pages here.
2916          */
2917         if (!kvm_try_get_pfn(pfn))
2918                 r = -EFAULT;
2919 
2920 out:
2921         pte_unmap_unlock(ptep, ptl);
2922         *p_pfn = pfn;
2923 
2924         return r;
2925 }
2926 
2927 /*
2928  * Pin guest page in memory and return its pfn.
2929  * @addr: host virtual address which maps memory to the guest
2930  * @atomic: whether this function is forbidden from sleeping
2931  * @interruptible: whether the process can be interrupted by non-fatal signals
2932  * @async: whether this function need to wait IO complete if the
2933  *         host page is not in the memory
2934  * @write_fault: whether we should get a writable host page
2935  * @writable: whether it allows to map a writable host page for !@write_fault
2936  *
2937  * The function will map a writable host page for these two cases:
2938  * 1): @write_fault = true
2939  * 2): @write_fault = false && @writable, @writable will tell the caller
2940  *     whether the mapping is writable.
2941  */
2942 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2943                      bool *async, bool write_fault, bool *writable)
2944 {
2945         struct vm_area_struct *vma;
2946         kvm_pfn_t pfn;
2947         int npages, r;
2948 
2949         /* we can do it either atomically or asynchronously, not both */
2950         BUG_ON(atomic && async);
2951 
2952         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2953                 return pfn;
2954 
2955         if (atomic)
2956                 return KVM_PFN_ERR_FAULT;
2957 
2958         npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2959                                  writable, &pfn);
2960         if (npages == 1)
2961                 return pfn;
2962         if (npages == -EINTR)
2963                 return KVM_PFN_ERR_SIGPENDING;
2964 
2965         mmap_read_lock(current->mm);
2966         if (npages == -EHWPOISON ||
2967               (!async && check_user_page_hwpoison(addr))) {
2968                 pfn = KVM_PFN_ERR_HWPOISON;
2969                 goto exit;
2970         }
2971 
2972 retry:
2973         vma = vma_lookup(current->mm, addr);
2974 
2975         if (vma == NULL)
2976                 pfn = KVM_PFN_ERR_FAULT;
2977         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2978                 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2979                 if (r == -EAGAIN)
2980                         goto retry;
2981                 if (r < 0)
2982                         pfn = KVM_PFN_ERR_FAULT;
2983         } else {
2984                 if (async && vma_is_valid(vma, write_fault))
2985                         *async = true;
2986                 pfn = KVM_PFN_ERR_FAULT;
2987         }
2988 exit:
2989         mmap_read_unlock(current->mm);
2990         return pfn;
2991 }
2992 
2993 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2994                                bool atomic, bool interruptible, bool *async,
2995                                bool write_fault, bool *writable, hva_t *hva)
2996 {
2997         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2998 
2999         if (hva)
3000                 *hva = addr;
3001 
3002         if (kvm_is_error_hva(addr)) {
3003                 if (writable)
3004                         *writable = false;
3005 
3006                 return addr == KVM_HVA_ERR_RO_BAD ? KVM_PFN_ERR_RO_FAULT :
3007                                                     KVM_PFN_NOSLOT;
3008         }
3009 
3010         /* Do not map writable pfn in the readonly memslot. */
3011         if (writable && memslot_is_readonly(slot)) {
3012                 *writable = false;
3013                 writable = NULL;
3014         }
3015 
3016         return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
3017                           writable);
3018 }
3019 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
3020 
3021 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
3022                       bool *writable)
3023 {
3024         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
3025                                     NULL, write_fault, writable, NULL);
3026 }
3027 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
3028 
3029 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
3030 {
3031         return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
3032                                     NULL, NULL);
3033 }
3034 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
3035 
3036 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
3037 {
3038         return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
3039                                     NULL, NULL);
3040 }
3041 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
3042 
3043 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
3044 {
3045         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3046 }
3047 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
3048 
3049 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
3050 {
3051         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
3052 }
3053 EXPORT_SYMBOL_GPL(gfn_to_pfn);
3054 
3055 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
3056 {
3057         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3058 }
3059 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
3060 
3061 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3062                             struct page **pages, int nr_pages)
3063 {
3064         unsigned long addr;
3065         gfn_t entry = 0;
3066 
3067         addr = gfn_to_hva_many(slot, gfn, &entry);
3068         if (kvm_is_error_hva(addr))
3069                 return -1;
3070 
3071         if (entry < nr_pages)
3072                 return 0;
3073 
3074         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
3075 }
3076 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
3077 
3078 /*
3079  * Do not use this helper unless you are absolutely certain the gfn _must_ be
3080  * backed by 'struct page'.  A valid example is if the backing memslot is
3081  * controlled by KVM.  Note, if the returned page is valid, it's refcount has
3082  * been elevated by gfn_to_pfn().
3083  */
3084 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
3085 {
3086         struct page *page;
3087         kvm_pfn_t pfn;
3088 
3089         pfn = gfn_to_pfn(kvm, gfn);
3090 
3091         if (is_error_noslot_pfn(pfn))
3092                 return KVM_ERR_PTR_BAD_PAGE;
3093 
3094         page = kvm_pfn_to_refcounted_page(pfn);
3095         if (!page)
3096                 return KVM_ERR_PTR_BAD_PAGE;
3097 
3098         return page;
3099 }
3100 EXPORT_SYMBOL_GPL(gfn_to_page);
3101 
3102 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
3103 {
3104         if (dirty)
3105                 kvm_release_pfn_dirty(pfn);
3106         else
3107                 kvm_release_pfn_clean(pfn);
3108 }
3109 
3110 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
3111 {
3112         kvm_pfn_t pfn;
3113         void *hva = NULL;
3114         struct page *page = KVM_UNMAPPED_PAGE;
3115 
3116         if (!map)
3117                 return -EINVAL;
3118 
3119         pfn = gfn_to_pfn(vcpu->kvm, gfn);
3120         if (is_error_noslot_pfn(pfn))
3121                 return -EINVAL;
3122 
3123         if (pfn_valid(pfn)) {
3124                 page = pfn_to_page(pfn);
3125                 hva = kmap(page);
3126 #ifdef CONFIG_HAS_IOMEM
3127         } else {
3128                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
3129 #endif
3130         }
3131 
3132         if (!hva)
3133                 return -EFAULT;
3134 
3135         map->page = page;
3136         map->hva = hva;
3137         map->pfn = pfn;
3138         map->gfn = gfn;
3139 
3140         return 0;
3141 }
3142 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
3143 
3144 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
3145 {
3146         if (!map)
3147                 return;
3148 
3149         if (!map->hva)
3150                 return;
3151 
3152         if (map->page != KVM_UNMAPPED_PAGE)
3153                 kunmap(map->page);
3154 #ifdef CONFIG_HAS_IOMEM
3155         else
3156                 memunmap(map->hva);
3157 #endif
3158 
3159         if (dirty)
3160                 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
3161 
3162         kvm_release_pfn(map->pfn, dirty);
3163 
3164         map->hva = NULL;
3165         map->page = NULL;
3166 }
3167 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
3168 
3169 static bool kvm_is_ad_tracked_page(struct page *page)
3170 {
3171         /*
3172          * Per page-flags.h, pages tagged PG_reserved "should in general not be
3173          * touched (e.g. set dirty) except by its owner".
3174          */
3175         return !PageReserved(page);
3176 }
3177 
3178 static void kvm_set_page_dirty(struct page *page)
3179 {
3180         if (kvm_is_ad_tracked_page(page))
3181                 SetPageDirty(page);
3182 }
3183 
3184 static void kvm_set_page_accessed(struct page *page)
3185 {
3186         if (kvm_is_ad_tracked_page(page))
3187                 mark_page_accessed(page);
3188 }
3189 
3190 void kvm_release_page_clean(struct page *page)
3191 {
3192         WARN_ON(is_error_page(page));
3193 
3194         kvm_set_page_accessed(page);
3195         put_page(page);
3196 }
3197 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
3198 
3199 void kvm_release_pfn_clean(kvm_pfn_t pfn)
3200 {
3201         struct page *page;
3202 
3203         if (is_error_noslot_pfn(pfn))
3204                 return;
3205 
3206         page = kvm_pfn_to_refcounted_page(pfn);
3207         if (!page)
3208                 return;
3209 
3210         kvm_release_page_clean(page);
3211 }
3212 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
3213 
3214 void kvm_release_page_dirty(struct page *page)
3215 {
3216         WARN_ON(is_error_page(page));
3217 
3218         kvm_set_page_dirty(page);
3219         kvm_release_page_clean(page);
3220 }
3221 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
3222 
3223 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
3224 {
3225         struct page *page;
3226 
3227         if (is_error_noslot_pfn(pfn))
3228                 return;
3229 
3230         page = kvm_pfn_to_refcounted_page(pfn);
3231         if (!page)
3232                 return;
3233 
3234         kvm_release_page_dirty(page);
3235 }
3236 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
3237 
3238 /*
3239  * Note, checking for an error/noslot pfn is the caller's responsibility when
3240  * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
3241  * "set" helpers are not to be used when the pfn might point at garbage.
3242  */
3243 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
3244 {
3245         if (WARN_ON(is_error_noslot_pfn(pfn)))
3246                 return;
3247 
3248         if (pfn_valid(pfn))
3249                 kvm_set_page_dirty(pfn_to_page(pfn));
3250 }
3251 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
3252 
3253 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
3254 {
3255         if (WARN_ON(is_error_noslot_pfn(pfn)))
3256                 return;
3257 
3258         if (pfn_valid(pfn))
3259                 kvm_set_page_accessed(pfn_to_page(pfn));
3260 }
3261 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
3262 
3263 static int next_segment(unsigned long len, int offset)
3264 {
3265         if (len > PAGE_SIZE - offset)
3266                 return PAGE_SIZE - offset;
3267         else
3268                 return len;
3269 }
3270 
3271 /* Copy @len bytes from guest memory at '(@gfn * PAGE_SIZE) + @offset' to @data */
3272 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3273                                  void *data, int offset, int len)
3274 {
3275         int r;
3276         unsigned long addr;
3277 
3278         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3279         if (kvm_is_error_hva(addr))
3280                 return -EFAULT;
3281         r = __copy_from_user(data, (void __user *)addr + offset, len);
3282         if (r)
3283                 return -EFAULT;
3284         return 0;
3285 }
3286 
3287 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3288                         int len)
3289 {
3290         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3291 
3292         return __kvm_read_guest_page(slot, gfn, data, offset, len);
3293 }
3294 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3295 
3296 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3297                              int offset, int len)
3298 {
3299         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3300 
3301         return __kvm_read_guest_page(slot, gfn, data, offset, len);
3302 }
3303 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3304 
3305 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3306 {
3307         gfn_t gfn = gpa >> PAGE_SHIFT;
3308         int seg;
3309         int offset = offset_in_page(gpa);
3310         int ret;
3311 
3312         while ((seg = next_segment(len, offset)) != 0) {
3313                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3314                 if (ret < 0)
3315                         return ret;
3316                 offset = 0;
3317                 len -= seg;
3318                 data += seg;
3319                 ++gfn;
3320         }
3321         return 0;
3322 }
3323 EXPORT_SYMBOL_GPL(kvm_read_guest);
3324 
3325 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3326 {
3327         gfn_t gfn = gpa >> PAGE_SHIFT;
3328         int seg;
3329         int offset = offset_in_page(gpa);
3330         int ret;
3331 
3332         while ((seg = next_segment(len, offset)) != 0) {
3333                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3334                 if (ret < 0)
3335                         return ret;
3336                 offset = 0;
3337                 len -= seg;
3338                 data += seg;
3339                 ++gfn;
3340         }
3341         return 0;
3342 }
3343 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3344 
3345 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3346                                    void *data, int offset, unsigned long len)
3347 {
3348         int r;
3349         unsigned long addr;
3350 
3351         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3352         if (kvm_is_error_hva(addr))
3353                 return -EFAULT;
3354         pagefault_disable();
3355         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3356         pagefault_enable();
3357         if (r)
3358                 return -EFAULT;
3359         return 0;
3360 }
3361 
3362 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3363                                void *data, unsigned long len)
3364 {
3365         gfn_t gfn = gpa >> PAGE_SHIFT;
3366         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3367         int offset = offset_in_page(gpa);
3368 
3369         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3370 }
3371 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3372 
3373 /* Copy @len bytes from @data into guest memory at '(@gfn * PAGE_SIZE) + @offset' */
3374 static int __kvm_write_guest_page(struct kvm *kvm,
3375                                   struct kvm_memory_slot *memslot, gfn_t gfn,
3376                                   const void *data, int offset, int len)
3377 {
3378         int r;
3379         unsigned long addr;
3380 
3381         addr = gfn_to_hva_memslot(memslot, gfn);
3382         if (kvm_is_error_hva(addr))
3383                 return -EFAULT;
3384         r = __copy_to_user((void __user *)addr + offset, data, len);
3385         if (r)
3386                 return -EFAULT;
3387         mark_page_dirty_in_slot(kvm, memslot, gfn);
3388         return 0;
3389 }
3390 
3391 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3392                          const void *data, int offset, int len)
3393 {
3394         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3395 
3396         return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3397 }
3398 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3399 
3400 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3401                               const void *data, int offset, int len)
3402 {
3403         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3404 
3405         return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3406 }
3407 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3408 
3409 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3410                     unsigned long len)
3411 {
3412         gfn_t gfn = gpa >> PAGE_SHIFT;
3413         int seg;
3414         int offset = offset_in_page(gpa);
3415         int ret;
3416 
3417         while ((seg = next_segment(len, offset)) != 0) {
3418                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3419                 if (ret < 0)
3420                         return ret;
3421                 offset = 0;
3422                 len -= seg;
3423                 data += seg;
3424                 ++gfn;
3425         }
3426         return 0;
3427 }
3428 EXPORT_SYMBOL_GPL(kvm_write_guest);
3429 
3430 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3431                          unsigned long len)
3432 {
3433         gfn_t gfn = gpa >> PAGE_SHIFT;
3434         int seg;
3435         int offset = offset_in_page(gpa);
3436         int ret;
3437 
3438         while ((seg = next_segment(len, offset)) != 0) {
3439                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3440                 if (ret < 0)
3441                         return ret;
3442                 offset = 0;
3443                 len -= seg;
3444                 data += seg;
3445                 ++gfn;
3446         }
3447         return 0;
3448 }
3449 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3450 
3451 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3452                                        struct gfn_to_hva_cache *ghc,
3453                                        gpa_t gpa, unsigned long len)
3454 {
3455         int offset = offset_in_page(gpa);
3456         gfn_t start_gfn = gpa >> PAGE_SHIFT;
3457         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3458         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3459         gfn_t nr_pages_avail;
3460 
3461         /* Update ghc->generation before performing any error checks. */
3462         ghc->generation = slots->generation;
3463 
3464         if (start_gfn > end_gfn) {
3465                 ghc->hva = KVM_HVA_ERR_BAD;
3466                 return -EINVAL;
3467         }
3468 
3469         /*
3470          * If the requested region crosses two memslots, we still
3471          * verify that the entire region is valid here.
3472          */
3473         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3474                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3475                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3476                                            &nr_pages_avail);
3477                 if (kvm_is_error_hva(ghc->hva))
3478                         return -EFAULT;
3479         }
3480 
3481         /* Use the slow path for cross page reads and writes. */
3482         if (nr_pages_needed == 1)
3483                 ghc->hva += offset;
3484         else
3485                 ghc->memslot = NULL;
3486 
3487         ghc->gpa = gpa;
3488         ghc->len = len;
3489         return 0;
3490 }
3491 
3492 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3493                               gpa_t gpa, unsigned long len)
3494 {
3495         struct kvm_memslots *slots = kvm_memslots(kvm);
3496         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3497 }
3498 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3499 
3500 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3501                                   void *data, unsigned int offset,
3502                                   unsigned long len)
3503 {
3504         struct kvm_memslots *slots = kvm_memslots(kvm);
3505         int r;
3506         gpa_t gpa = ghc->gpa + offset;
3507 
3508         if (WARN_ON_ONCE(len + offset > ghc->len))
3509                 return -EINVAL;
3510 
3511         if (slots->generation != ghc->generation) {
3512                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3513                         return -EFAULT;
3514         }
3515 
3516         if (kvm_is_error_hva(ghc->hva))
3517                 return -EFAULT;
3518 
3519         if (unlikely(!ghc->memslot))
3520                 return kvm_write_guest(kvm, gpa, data, len);
3521 
3522         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3523         if (r)
3524                 return -EFAULT;
3525         mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3526 
3527         return 0;
3528 }
3529 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3530 
3531 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3532                            void *data, unsigned long len)
3533 {
3534         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3535 }
3536 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3537 
3538 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3539                                  void *data, unsigned int offset,
3540                                  unsigned long len)
3541 {
3542         struct kvm_memslots *slots = kvm_memslots(kvm);
3543         int r;
3544         gpa_t gpa = ghc->gpa + offset;
3545 
3546         if (WARN_ON_ONCE(len + offset > ghc->len))
3547                 return -EINVAL;
3548 
3549         if (slots->generation != ghc->generation) {
3550                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3551                         return -EFAULT;
3552         }
3553 
3554         if (kvm_is_error_hva(ghc->hva))
3555                 return -EFAULT;
3556 
3557         if (unlikely(!ghc->memslot))
3558                 return kvm_read_guest(kvm, gpa, data, len);
3559 
3560         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3561         if (r)
3562                 return -EFAULT;
3563 
3564         return 0;
3565 }
3566 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3567 
3568 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3569                           void *data, unsigned long len)
3570 {
3571         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3572 }
3573 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3574 
3575 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3576 {
3577         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3578         gfn_t gfn = gpa >> PAGE_SHIFT;
3579         int seg;
3580         int offset = offset_in_page(gpa);
3581         int ret;
3582 
3583         while ((seg = next_segment(len, offset)) != 0) {
3584                 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3585                 if (ret < 0)
3586                         return ret;
3587                 offset = 0;
3588                 len -= seg;
3589                 ++gfn;
3590         }
3591         return 0;
3592 }
3593 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3594 
3595 void mark_page_dirty_in_slot(struct kvm *kvm,
3596                              const struct kvm_memory_slot *memslot,
3597                              gfn_t gfn)
3598 {
3599         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3600 
3601 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3602         if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3603                 return;
3604 
3605         WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3606 #endif
3607 
3608         if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3609                 unsigned long rel_gfn = gfn - memslot->base_gfn;
3610                 u32 slot = (memslot->as_id << 16) | memslot->id;
3611 
3612                 if (kvm->dirty_ring_size && vcpu)
3613                         kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3614                 else if (memslot->dirty_bitmap)
3615                         set_bit_le(rel_gfn, memslot->dirty_bitmap);
3616         }
3617 }
3618 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3619 
3620 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3621 {
3622         struct kvm_memory_slot *memslot;
3623 
3624         memslot = gfn_to_memslot(kvm, gfn);
3625         mark_page_dirty_in_slot(kvm, memslot, gfn);
3626 }
3627 EXPORT_SYMBOL_GPL(mark_page_dirty);
3628 
3629 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3630 {
3631         struct kvm_memory_slot *memslot;
3632 
3633         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3634         mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3635 }
3636 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3637 
3638 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3639 {
3640         if (!vcpu->sigset_active)
3641                 return;
3642 
3643         /*
3644          * This does a lockless modification of ->real_blocked, which is fine
3645          * because, only current can change ->real_blocked and all readers of
3646          * ->real_blocked don't care as long ->real_blocked is always a subset
3647          * of ->blocked.
3648          */
3649         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3650 }
3651 
3652 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3653 {
3654         if (!vcpu->sigset_active)
3655                 return;
3656 
3657         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3658         sigemptyset(&current->real_blocked);
3659 }
3660 
3661 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3662 {
3663         unsigned int old, val, grow, grow_start;
3664 
3665         old = val = vcpu->halt_poll_ns;
3666         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3667         grow = READ_ONCE(halt_poll_ns_grow);
3668         if (!grow)
3669                 goto out;
3670 
3671         val *= grow;
3672         if (val < grow_start)
3673                 val = grow_start;
3674 
3675         vcpu->halt_poll_ns = val;
3676 out:
3677         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3678 }
3679 
3680 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3681 {
3682         unsigned int old, val, shrink, grow_start;
3683 
3684         old = val = vcpu->halt_poll_ns;
3685         shrink = READ_ONCE(halt_poll_ns_shrink);
3686         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3687         if (shrink == 0)
3688                 val = 0;
3689         else
3690                 val /= shrink;
3691 
3692         if (val < grow_start)
3693                 val = 0;
3694 
3695         vcpu->halt_poll_ns = val;
3696         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3697 }
3698 
3699 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3700 {
3701         int ret = -EINTR;
3702         int idx = srcu_read_lock(&vcpu->kvm->srcu);
3703 
3704         if (kvm_arch_vcpu_runnable(vcpu))
3705                 goto out;
3706         if (kvm_cpu_has_pending_timer(vcpu))
3707                 goto out;
3708         if (signal_pending(current))
3709                 goto out;
3710         if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3711                 goto out;
3712 
3713         ret = 0;
3714 out:
3715         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3716         return ret;
3717 }
3718 
3719 /*
3720  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3721  * pending.  This is mostly used when halting a vCPU, but may also be used
3722  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3723  */
3724 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3725 {
3726         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3727         bool waited = false;
3728 
3729         vcpu->stat.generic.blocking = 1;
3730 
3731         preempt_disable();
3732         kvm_arch_vcpu_blocking(vcpu);
3733         prepare_to_rcuwait(wait);
3734         preempt_enable();
3735 
3736         for (;;) {
3737                 set_current_state(TASK_INTERRUPTIBLE);
3738 
3739                 if (kvm_vcpu_check_block(vcpu) < 0)
3740                         break;
3741 
3742                 waited = true;
3743                 schedule();
3744         }
3745 
3746         preempt_disable();
3747         finish_rcuwait(wait);
3748         kvm_arch_vcpu_unblocking(vcpu);
3749         preempt_enable();
3750 
3751         vcpu->stat.generic.blocking = 0;
3752 
3753         return waited;
3754 }
3755 
3756 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3757                                           ktime_t end, bool success)
3758 {
3759         struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3760         u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3761 
3762         ++vcpu->stat.generic.halt_attempted_poll;
3763 
3764         if (success) {
3765                 ++vcpu->stat.generic.halt_successful_poll;
3766 
3767                 if (!vcpu_valid_wakeup(vcpu))
3768                         ++vcpu->stat.generic.halt_poll_invalid;
3769 
3770                 stats->halt_poll_success_ns += poll_ns;
3771                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3772         } else {
3773                 stats->halt_poll_fail_ns += poll_ns;
3774                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3775         }
3776 }
3777 
3778 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3779 {
3780         struct kvm *kvm = vcpu->kvm;
3781 
3782         if (kvm->override_halt_poll_ns) {
3783                 /*
3784                  * Ensure kvm->max_halt_poll_ns is not read before
3785                  * kvm->override_halt_poll_ns.
3786                  *
3787                  * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3788                  */
3789                 smp_rmb();
3790                 return READ_ONCE(kvm->max_halt_poll_ns);
3791         }
3792 
3793         return READ_ONCE(halt_poll_ns);
3794 }
3795 
3796 /*
3797  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3798  * polling is enabled, busy wait for a short time before blocking to avoid the
3799  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3800  * is halted.
3801  */
3802 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3803 {
3804         unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3805         bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3806         ktime_t start, cur, poll_end;
3807         bool waited = false;
3808         bool do_halt_poll;
3809         u64 halt_ns;
3810 
3811         if (vcpu->halt_poll_ns > max_halt_poll_ns)
3812                 vcpu->halt_poll_ns = max_halt_poll_ns;
3813 
3814         do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3815 
3816         start = cur = poll_end = ktime_get();
3817         if (do_halt_poll) {
3818                 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3819 
3820                 do {
3821                         if (kvm_vcpu_check_block(vcpu) < 0)
3822                                 goto out;
3823                         cpu_relax();
3824                         poll_end = cur = ktime_get();
3825                 } while (kvm_vcpu_can_poll(cur, stop));
3826         }
3827 
3828         waited = kvm_vcpu_block(vcpu);
3829 
3830         cur = ktime_get();
3831         if (waited) {
3832                 vcpu->stat.generic.halt_wait_ns +=
3833                         ktime_to_ns(cur) - ktime_to_ns(poll_end);
3834                 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3835                                 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3836         }
3837 out:
3838         /* The total time the vCPU was "halted", including polling time. */
3839         halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3840 
3841         /*
3842          * Note, halt-polling is considered successful so long as the vCPU was
3843          * never actually scheduled out, i.e. even if the wake event arrived
3844          * after of the halt-polling loop itself, but before the full wait.
3845          */
3846         if (do_halt_poll)
3847                 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3848 
3849         if (halt_poll_allowed) {
3850                 /* Recompute the max halt poll time in case it changed. */
3851                 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3852 
3853                 if (!vcpu_valid_wakeup(vcpu)) {
3854                         shrink_halt_poll_ns(vcpu);
3855                 } else if (max_halt_poll_ns) {
3856                         if (halt_ns <= vcpu->halt_poll_ns)
3857                                 ;
3858                         /* we had a long block, shrink polling */
3859                         else if (vcpu->halt_poll_ns &&
3860                                  halt_ns > max_halt_poll_ns)
3861                                 shrink_halt_poll_ns(vcpu);
3862                         /* we had a short halt and our poll time is too small */
3863                         else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3864                                  halt_ns < max_halt_poll_ns)
3865                                 grow_halt_poll_ns(vcpu);
3866                 } else {
3867                         vcpu->halt_poll_ns = 0;
3868                 }
3869         }
3870 
3871         trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3872 }
3873 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3874 
3875 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3876 {
3877         if (__kvm_vcpu_wake_up(vcpu)) {
3878                 WRITE_ONCE(vcpu->ready, true);
3879                 ++vcpu->stat.generic.halt_wakeup;
3880                 return true;
3881         }
3882 
3883         return false;
3884 }
3885 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3886 
3887 #ifndef CONFIG_S390
3888 /*
3889  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3890  */
3891 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3892 {
3893         int me, cpu;
3894 
3895         if (kvm_vcpu_wake_up(vcpu))
3896                 return;
3897 
3898         me = get_cpu();
3899         /*
3900          * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3901          * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3902          * kick" check does not need atomic operations if kvm_vcpu_kick is used
3903          * within the vCPU thread itself.
3904          */
3905         if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3906                 if (vcpu->mode == IN_GUEST_MODE)
3907                         WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3908                 goto out;
3909         }
3910 
3911         /*
3912          * Note, the vCPU could get migrated to a different pCPU at any point
3913          * after kvm_arch_vcpu_should_kick(), which could result in sending an
3914          * IPI to the previous pCPU.  But, that's ok because the purpose of the
3915          * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3916          * vCPU also requires it to leave IN_GUEST_MODE.
3917          */
3918         if (kvm_arch_vcpu_should_kick(vcpu)) {
3919                 cpu = READ_ONCE(vcpu->cpu);
3920                 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3921                         smp_send_reschedule(cpu);
3922         }
3923 out:
3924         put_cpu();
3925 }
3926 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3927 #endif /* !CONFIG_S390 */
3928 
3929 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3930 {
3931         struct pid *pid;
3932         struct task_struct *task = NULL;
3933         int ret = 0;
3934 
3935         rcu_read_lock();
3936         pid = rcu_dereference(target->pid);
3937         if (pid)
3938                 task = get_pid_task(pid, PIDTYPE_PID);
3939         rcu_read_unlock();
3940         if (!task)
3941                 return ret;
3942         ret = yield_to(task, 1);
3943         put_task_struct(task);
3944 
3945         return ret;
3946 }
3947 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3948 
3949 /*
3950  * Helper that checks whether a VCPU is eligible for directed yield.
3951  * Most eligible candidate to yield is decided by following heuristics:
3952  *
3953  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3954  *  (preempted lock holder), indicated by @in_spin_loop.
3955  *  Set at the beginning and cleared at the end of interception/PLE handler.
3956  *
3957  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3958  *  chance last time (mostly it has become eligible now since we have probably
3959  *  yielded to lockholder in last iteration. This is done by toggling
3960  *  @dy_eligible each time a VCPU checked for eligibility.)
3961  *
3962  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3963  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3964  *  burning. Giving priority for a potential lock-holder increases lock
3965  *  progress.
3966  *
3967  *  Since algorithm is based on heuristics, accessing another VCPU data without
3968  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3969  *  and continue with next VCPU and so on.
3970  */
3971 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3972 {
3973 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3974         bool eligible;
3975 
3976         eligible = !vcpu->spin_loop.in_spin_loop ||
3977                     vcpu->spin_loop.dy_eligible;
3978 
3979         if (vcpu->spin_loop.in_spin_loop)
3980                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3981 
3982         return eligible;
3983 #else
3984         return true;
3985 #endif
3986 }
3987 
3988 /*
3989  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3990  * a vcpu_load/vcpu_put pair.  However, for most architectures
3991  * kvm_arch_vcpu_runnable does not require vcpu_load.
3992  */
3993 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3994 {
3995         return kvm_arch_vcpu_runnable(vcpu);
3996 }
3997 
3998 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3999 {
4000         if (kvm_arch_dy_runnable(vcpu))
4001                 return true;
4002 
4003 #ifdef CONFIG_KVM_ASYNC_PF
4004         if (!list_empty_careful(&vcpu->async_pf.done))
4005                 return true;
4006 #endif
4007 
4008         return false;
4009 }
4010 
4011 /*
4012  * By default, simply query the target vCPU's current mode when checking if a
4013  * vCPU was preempted in kernel mode.  All architectures except x86 (or more
4014  * specifical, except VMX) allow querying whether or not a vCPU is in kernel
4015  * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel()
4016  * directly for cross-vCPU checks is functionally correct and accurate.
4017  */
4018 bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
4019 {
4020         return kvm_arch_vcpu_in_kernel(vcpu);
4021 }
4022 
4023 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
4024 {
4025         return false;
4026 }
4027 
4028 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
4029 {
4030         struct kvm *kvm = me->kvm;
4031         struct kvm_vcpu *vcpu;
4032         int last_boosted_vcpu;
4033         unsigned long i;
4034         int yielded = 0;
4035         int try = 3;
4036         int pass;
4037 
4038         last_boosted_vcpu = READ_ONCE(kvm->last_boosted_vcpu);
4039         kvm_vcpu_set_in_spin_loop(me, true);
4040         /*
4041          * We boost the priority of a VCPU that is runnable but not
4042          * currently running, because it got preempted by something
4043          * else and called schedule in __vcpu_run.  Hopefully that
4044          * VCPU is holding the lock that we need and will release it.
4045          * We approximate round-robin by starting at the last boosted VCPU.
4046          */
4047         for (pass = 0; pass < 2 && !yielded && try; pass++) {
4048                 kvm_for_each_vcpu(i, vcpu, kvm) {
4049                         if (!pass && i <= last_boosted_vcpu) {
4050                                 i = last_boosted_vcpu;
4051                                 continue;
4052                         } else if (pass && i > last_boosted_vcpu)
4053                                 break;
4054                         if (!READ_ONCE(vcpu->ready))
4055                                 continue;
4056                         if (vcpu == me)
4057                                 continue;
4058                         if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
4059                                 continue;
4060 
4061                         /*
4062                          * Treat the target vCPU as being in-kernel if it has a
4063                          * pending interrupt, as the vCPU trying to yield may
4064                          * be spinning waiting on IPI delivery, i.e. the target
4065                          * vCPU is in-kernel for the purposes of directed yield.
4066                          */
4067                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
4068                             !kvm_arch_dy_has_pending_interrupt(vcpu) &&
4069                             !kvm_arch_vcpu_preempted_in_kernel(vcpu))
4070                                 continue;
4071                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
4072                                 continue;
4073 
4074                         yielded = kvm_vcpu_yield_to(vcpu);
4075                         if (yielded > 0) {
4076                                 WRITE_ONCE(kvm->last_boosted_vcpu, i);
4077                                 break;
4078                         } else if (yielded < 0) {
4079                                 try--;
4080                                 if (!try)
4081                                         break;
4082                         }
4083                 }
4084         }
4085         kvm_vcpu_set_in_spin_loop(me, false);
4086 
4087         /* Ensure vcpu is not eligible during next spinloop */
4088         kvm_vcpu_set_dy_eligible(me, false);
4089 }
4090 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
4091 
4092 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
4093 {
4094 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4095         return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
4096             (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
4097              kvm->dirty_ring_size / PAGE_SIZE);
4098 #else
4099         return false;
4100 #endif
4101 }
4102 
4103 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
4104 {
4105         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
4106         struct page *page;
4107 
4108         if (vmf->pgoff == 0)
4109                 page = virt_to_page(vcpu->run);
4110 #ifdef CONFIG_X86
4111         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
4112                 page = virt_to_page(vcpu->arch.pio_data);
4113 #endif
4114 #ifdef CONFIG_KVM_MMIO
4115         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
4116                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
4117 #endif
4118         else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
4119                 page = kvm_dirty_ring_get_page(
4120                     &vcpu->dirty_ring,
4121                     vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
4122         else
4123                 return kvm_arch_vcpu_fault(vcpu, vmf);
4124         get_page(page);
4125         vmf->page = page;
4126         return 0;
4127 }
4128 
4129 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
4130         .fault = kvm_vcpu_fault,
4131 };
4132 
4133 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
4134 {
4135         struct kvm_vcpu *vcpu = file->private_data;
4136         unsigned long pages = vma_pages(vma);
4137 
4138         if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
4139              kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
4140             ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
4141                 return -EINVAL;
4142 
4143         vma->vm_ops = &kvm_vcpu_vm_ops;
4144         return 0;
4145 }
4146 
4147 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
4148 {
4149         struct kvm_vcpu *vcpu = filp->private_data;
4150 
4151         kvm_put_kvm(vcpu->kvm);
4152         return 0;
4153 }
4154 
4155 static struct file_operations kvm_vcpu_fops = {
4156         .release        = kvm_vcpu_release,
4157         .unlocked_ioctl = kvm_vcpu_ioctl,
4158         .mmap           = kvm_vcpu_mmap,
4159         .llseek         = noop_llseek,
4160         KVM_COMPAT(kvm_vcpu_compat_ioctl),
4161 };
4162 
4163 /*
4164  * Allocates an inode for the vcpu.
4165  */
4166 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
4167 {
4168         char name[8 + 1 + ITOA_MAX_LEN + 1];
4169 
4170         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
4171         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
4172 }
4173 
4174 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
4175 static int vcpu_get_pid(void *data, u64 *val)
4176 {
4177         struct kvm_vcpu *vcpu = data;
4178 
4179         rcu_read_lock();
4180         *val = pid_nr(rcu_dereference(vcpu->pid));
4181         rcu_read_unlock();
4182         return 0;
4183 }
4184 
4185 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
4186 
4187 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
4188 {
4189         struct dentry *debugfs_dentry;
4190         char dir_name[ITOA_MAX_LEN * 2];
4191 
4192         if (!debugfs_initialized())
4193                 return;
4194 
4195         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
4196         debugfs_dentry = debugfs_create_dir(dir_name,
4197                                             vcpu->kvm->debugfs_dentry);
4198         debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
4199                             &vcpu_get_pid_fops);
4200 
4201         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
4202 }
4203 #endif
4204 
4205 /*
4206  * Creates some virtual cpus.  Good luck creating more than one.
4207  */
4208 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, unsigned long id)
4209 {
4210         int r;
4211         struct kvm_vcpu *vcpu;
4212         struct page *page;
4213 
4214         /*
4215          * KVM tracks vCPU IDs as 'int', be kind to userspace and reject
4216          * too-large values instead of silently truncating.
4217          *
4218          * Ensure KVM_MAX_VCPU_IDS isn't pushed above INT_MAX without first
4219          * changing the storage type (at the very least, IDs should be tracked
4220          * as unsigned ints).
4221          */
4222         BUILD_BUG_ON(KVM_MAX_VCPU_IDS > INT_MAX);
4223         if (id >= KVM_MAX_VCPU_IDS)
4224                 return -EINVAL;
4225 
4226         mutex_lock(&kvm->lock);
4227         if (kvm->created_vcpus >= kvm->max_vcpus) {
4228                 mutex_unlock(&kvm->lock);
4229                 return -EINVAL;
4230         }
4231 
4232         r = kvm_arch_vcpu_precreate(kvm, id);
4233         if (r) {
4234                 mutex_unlock(&kvm->lock);
4235                 return r;
4236         }
4237 
4238         kvm->created_vcpus++;
4239         mutex_unlock(&kvm->lock);
4240 
4241         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
4242         if (!vcpu) {
4243                 r = -ENOMEM;
4244                 goto vcpu_decrement;
4245         }
4246 
4247         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
4248         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
4249         if (!page) {
4250                 r = -ENOMEM;
4251                 goto vcpu_free;
4252         }
4253         vcpu->run = page_address(page);
4254 
4255         kvm_vcpu_init(vcpu, kvm, id);
4256 
4257         r = kvm_arch_vcpu_create(vcpu);
4258         if (r)
4259                 goto vcpu_free_run_page;
4260 
4261         if (kvm->dirty_ring_size) {
4262                 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
4263                                          id, kvm->dirty_ring_size);
4264                 if (r)
4265                         goto arch_vcpu_destroy;
4266         }
4267 
4268         mutex_lock(&kvm->lock);
4269 
4270 #ifdef CONFIG_LOCKDEP
4271         /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
4272         mutex_lock(&vcpu->mutex);
4273         mutex_unlock(&vcpu->mutex);
4274 #endif
4275 
4276         if (kvm_get_vcpu_by_id(kvm, id)) {
4277                 r = -EEXIST;
4278                 goto unlock_vcpu_destroy;
4279         }
4280 
4281         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4282         r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
4283         if (r)
4284                 goto unlock_vcpu_destroy;
4285 
4286         /* Now it's all set up, let userspace reach it */
4287         kvm_get_kvm(kvm);
4288         r = create_vcpu_fd(vcpu);
4289         if (r < 0)
4290                 goto kvm_put_xa_release;
4291 
4292         if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
4293                 r = -EINVAL;
4294                 goto kvm_put_xa_release;
4295         }
4296 
4297         /*
4298          * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
4299          * pointer before kvm->online_vcpu's incremented value.
4300          */
4301         smp_wmb();
4302         atomic_inc(&kvm->online_vcpus);
4303 
4304         mutex_unlock(&kvm->lock);
4305         kvm_arch_vcpu_postcreate(vcpu);
4306         kvm_create_vcpu_debugfs(vcpu);
4307         return r;
4308 
4309 kvm_put_xa_release:
4310         kvm_put_kvm_no_destroy(kvm);
4311         xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4312 unlock_vcpu_destroy:
4313         mutex_unlock(&kvm->lock);
4314         kvm_dirty_ring_free(&vcpu->dirty_ring);
4315 arch_vcpu_destroy:
4316         kvm_arch_vcpu_destroy(vcpu);
4317 vcpu_free_run_page:
4318         free_page((unsigned long)vcpu->run);
4319 vcpu_free:
4320         kmem_cache_free(kvm_vcpu_cache, vcpu);
4321 vcpu_decrement:
4322         mutex_lock(&kvm->lock);
4323         kvm->created_vcpus--;
4324         mutex_unlock(&kvm->lock);
4325         return r;
4326 }
4327 
4328 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4329 {
4330         if (sigset) {
4331                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4332                 vcpu->sigset_active = 1;
4333                 vcpu->sigset = *sigset;
4334         } else
4335                 vcpu->sigset_active = 0;
4336         return 0;
4337 }
4338 
4339 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4340                               size_t size, loff_t *offset)
4341 {
4342         struct kvm_vcpu *vcpu = file->private_data;
4343 
4344         return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4345                         &kvm_vcpu_stats_desc[0], &vcpu->stat,
4346                         sizeof(vcpu->stat), user_buffer, size, offset);
4347 }
4348 
4349 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4350 {
4351         struct kvm_vcpu *vcpu = file->private_data;
4352 
4353         kvm_put_kvm(vcpu->kvm);
4354         return 0;
4355 }
4356 
4357 static const struct file_operations kvm_vcpu_stats_fops = {
4358         .owner = THIS_MODULE,
4359         .read = kvm_vcpu_stats_read,
4360         .release = kvm_vcpu_stats_release,
4361         .llseek = noop_llseek,
4362 };
4363 
4364 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4365 {
4366         int fd;
4367         struct file *file;
4368         char name[15 + ITOA_MAX_LEN + 1];
4369 
4370         snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4371 
4372         fd = get_unused_fd_flags(O_CLOEXEC);
4373         if (fd < 0)
4374                 return fd;
4375 
4376         file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4377         if (IS_ERR(file)) {
4378                 put_unused_fd(fd);
4379                 return PTR_ERR(file);
4380         }
4381 
4382         kvm_get_kvm(vcpu->kvm);
4383 
4384         file->f_mode |= FMODE_PREAD;
4385         fd_install(fd, file);
4386 
4387         return fd;
4388 }
4389 
4390 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
4391 static int kvm_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
4392                                      struct kvm_pre_fault_memory *range)
4393 {
4394         int idx;
4395         long r;
4396         u64 full_size;
4397 
4398         if (range->flags)
4399                 return -EINVAL;
4400 
4401         if (!PAGE_ALIGNED(range->gpa) ||
4402             !PAGE_ALIGNED(range->size) ||
4403             range->gpa + range->size <= range->gpa)
4404                 return -EINVAL;
4405 
4406         vcpu_load(vcpu);
4407         idx = srcu_read_lock(&vcpu->kvm->srcu);
4408 
4409         full_size = range->size;
4410         do {
4411                 if (signal_pending(current)) {
4412                         r = -EINTR;
4413                         break;
4414                 }
4415 
4416                 r = kvm_arch_vcpu_pre_fault_memory(vcpu, range);
4417                 if (WARN_ON_ONCE(r == 0 || r == -EIO))
4418                         break;
4419 
4420                 if (r < 0)
4421                         break;
4422 
4423                 range->size -= r;
4424                 range->gpa += r;
4425                 cond_resched();
4426         } while (range->size);
4427 
4428         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4429         vcpu_put(vcpu);
4430 
4431         /* Return success if at least one page was mapped successfully.  */
4432         return full_size == range->size ? r : 0;
4433 }
4434 #endif
4435 
4436 static long kvm_vcpu_ioctl(struct file *filp,
4437                            unsigned int ioctl, unsigned long arg)
4438 {
4439         struct kvm_vcpu *vcpu = filp->private_data;
4440         void __user *argp = (void __user *)arg;
4441         int r;
4442         struct kvm_fpu *fpu = NULL;
4443         struct kvm_sregs *kvm_sregs = NULL;
4444 
4445         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4446                 return -EIO;
4447 
4448         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4449                 return -EINVAL;
4450 
4451         /*
4452          * Some architectures have vcpu ioctls that are asynchronous to vcpu
4453          * execution; mutex_lock() would break them.
4454          */
4455         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4456         if (r != -ENOIOCTLCMD)
4457                 return r;
4458 
4459         if (mutex_lock_killable(&vcpu->mutex))
4460                 return -EINTR;
4461         switch (ioctl) {
4462         case KVM_RUN: {
4463                 struct pid *oldpid;
4464                 r = -EINVAL;
4465                 if (arg)
4466                         goto out;
4467                 oldpid = rcu_access_pointer(vcpu->pid);
4468                 if (unlikely(oldpid != task_pid(current))) {
4469                         /* The thread running this VCPU changed. */
4470                         struct pid *newpid;
4471 
4472                         r = kvm_arch_vcpu_run_pid_change(vcpu);
4473                         if (r)
4474                                 break;
4475 
4476                         newpid = get_task_pid(current, PIDTYPE_PID);
4477                         rcu_assign_pointer(vcpu->pid, newpid);
4478                         if (oldpid)
4479                                 synchronize_rcu();
4480                         put_pid(oldpid);
4481                 }
4482                 vcpu->wants_to_run = !READ_ONCE(vcpu->run->immediate_exit__unsafe);
4483                 r = kvm_arch_vcpu_ioctl_run(vcpu);
4484                 vcpu->wants_to_run = false;
4485 
4486                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4487                 break;
4488         }
4489         case KVM_GET_REGS: {
4490                 struct kvm_regs *kvm_regs;
4491 
4492                 r = -ENOMEM;
4493                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
4494                 if (!kvm_regs)
4495                         goto out;
4496                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4497                 if (r)
4498                         goto out_free1;
4499                 r = -EFAULT;
4500                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4501                         goto out_free1;
4502                 r = 0;
4503 out_free1:
4504                 kfree(kvm_regs);
4505                 break;
4506         }
4507         case KVM_SET_REGS: {
4508                 struct kvm_regs *kvm_regs;
4509 
4510                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4511                 if (IS_ERR(kvm_regs)) {
4512                         r = PTR_ERR(kvm_regs);
4513                         goto out;
4514                 }
4515                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4516                 kfree(kvm_regs);
4517                 break;
4518         }
4519         case KVM_GET_SREGS: {
4520                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
4521                 r = -ENOMEM;
4522                 if (!kvm_sregs)
4523                         goto out;
4524                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4525                 if (r)
4526                         goto out;
4527                 r = -EFAULT;
4528                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4529                         goto out;
4530                 r = 0;
4531                 break;
4532         }
4533         case KVM_SET_SREGS: {
4534                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4535                 if (IS_ERR(kvm_sregs)) {
4536                         r = PTR_ERR(kvm_sregs);
4537                         kvm_sregs = NULL;
4538                         goto out;
4539                 }
4540                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4541                 break;
4542         }
4543         case KVM_GET_MP_STATE: {
4544                 struct kvm_mp_state mp_state;
4545 
4546                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4547                 if (r)
4548                         goto out;
4549                 r = -EFAULT;
4550                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4551                         goto out;
4552                 r = 0;
4553                 break;
4554         }
4555         case KVM_SET_MP_STATE: {
4556                 struct kvm_mp_state mp_state;
4557 
4558                 r = -EFAULT;
4559                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4560                         goto out;
4561                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4562                 break;
4563         }
4564         case KVM_TRANSLATE: {
4565                 struct kvm_translation tr;
4566 
4567                 r = -EFAULT;
4568                 if (copy_from_user(&tr, argp, sizeof(tr)))
4569                         goto out;
4570                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4571                 if (r)
4572                         goto out;
4573                 r = -EFAULT;
4574                 if (copy_to_user(argp, &tr, sizeof(tr)))
4575                         goto out;
4576                 r = 0;
4577                 break;
4578         }
4579         case KVM_SET_GUEST_DEBUG: {
4580                 struct kvm_guest_debug dbg;
4581 
4582                 r = -EFAULT;
4583                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4584                         goto out;
4585                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4586                 break;
4587         }
4588         case KVM_SET_SIGNAL_MASK: {
4589                 struct kvm_signal_mask __user *sigmask_arg = argp;
4590                 struct kvm_signal_mask kvm_sigmask;
4591                 sigset_t sigset, *p;
4592 
4593                 p = NULL;
4594                 if (argp) {
4595                         r = -EFAULT;
4596                         if (copy_from_user(&kvm_sigmask, argp,
4597                                            sizeof(kvm_sigmask)))
4598                                 goto out;
4599                         r = -EINVAL;
4600                         if (kvm_sigmask.len != sizeof(sigset))
4601                                 goto out;
4602                         r = -EFAULT;
4603                         if (copy_from_user(&sigset, sigmask_arg->sigset,
4604                                            sizeof(sigset)))
4605                                 goto out;
4606                         p = &sigset;
4607                 }
4608                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4609                 break;
4610         }
4611         case KVM_GET_FPU: {
4612                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
4613                 r = -ENOMEM;
4614                 if (!fpu)
4615                         goto out;
4616                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4617                 if (r)
4618                         goto out;
4619                 r = -EFAULT;
4620                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4621                         goto out;
4622                 r = 0;
4623                 break;
4624         }
4625         case KVM_SET_FPU: {
4626                 fpu = memdup_user(argp, sizeof(*fpu));
4627                 if (IS_ERR(fpu)) {
4628                         r = PTR_ERR(fpu);
4629                         fpu = NULL;
4630                         goto out;
4631                 }
4632                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4633                 break;
4634         }
4635         case KVM_GET_STATS_FD: {
4636                 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4637                 break;
4638         }
4639 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
4640         case KVM_PRE_FAULT_MEMORY: {
4641                 struct kvm_pre_fault_memory range;
4642 
4643                 r = -EFAULT;
4644                 if (copy_from_user(&range, argp, sizeof(range)))
4645                         break;
4646                 r = kvm_vcpu_pre_fault_memory(vcpu, &range);
4647                 /* Pass back leftover range. */
4648                 if (copy_to_user(argp, &range, sizeof(range)))
4649                         r = -EFAULT;
4650                 break;
4651         }
4652 #endif
4653         default:
4654                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4655         }
4656 out:
4657         mutex_unlock(&vcpu->mutex);
4658         kfree(fpu);
4659         kfree(kvm_sregs);
4660         return r;
4661 }
4662 
4663 #ifdef CONFIG_KVM_COMPAT
4664 static long kvm_vcpu_compat_ioctl(struct file *filp,
4665                                   unsigned int ioctl, unsigned long arg)
4666 {
4667         struct kvm_vcpu *vcpu = filp->private_data;
4668         void __user *argp = compat_ptr(arg);
4669         int r;
4670 
4671         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4672                 return -EIO;
4673 
4674         switch (ioctl) {
4675         case KVM_SET_SIGNAL_MASK: {
4676                 struct kvm_signal_mask __user *sigmask_arg = argp;
4677                 struct kvm_signal_mask kvm_sigmask;
4678                 sigset_t sigset;
4679 
4680                 if (argp) {
4681                         r = -EFAULT;
4682                         if (copy_from_user(&kvm_sigmask, argp,
4683                                            sizeof(kvm_sigmask)))
4684                                 goto out;
4685                         r = -EINVAL;
4686                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
4687                                 goto out;
4688                         r = -EFAULT;
4689                         if (get_compat_sigset(&sigset,
4690                                               (compat_sigset_t __user *)sigmask_arg->sigset))
4691                                 goto out;
4692                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4693                 } else
4694                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4695                 break;
4696         }
4697         default:
4698                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4699         }
4700 
4701 out:
4702         return r;
4703 }
4704 #endif
4705 
4706 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4707 {
4708         struct kvm_device *dev = filp->private_data;
4709 
4710         if (dev->ops->mmap)
4711                 return dev->ops->mmap(dev, vma);
4712 
4713         return -ENODEV;
4714 }
4715 
4716 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4717                                  int (*accessor)(struct kvm_device *dev,
4718                                                  struct kvm_device_attr *attr),
4719                                  unsigned long arg)
4720 {
4721         struct kvm_device_attr attr;
4722 
4723         if (!accessor)
4724                 return -EPERM;
4725 
4726         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4727                 return -EFAULT;
4728 
4729         return accessor(dev, &attr);
4730 }
4731 
4732 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4733                              unsigned long arg)
4734 {
4735         struct kvm_device *dev = filp->private_data;
4736 
4737         if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4738                 return -EIO;
4739 
4740         switch (ioctl) {
4741         case KVM_SET_DEVICE_ATTR:
4742                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4743         case KVM_GET_DEVICE_ATTR:
4744                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4745         case KVM_HAS_DEVICE_ATTR:
4746                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4747         default:
4748                 if (dev->ops->ioctl)
4749                         return dev->ops->ioctl(dev, ioctl, arg);
4750 
4751                 return -ENOTTY;
4752         }
4753 }
4754 
4755 static int kvm_device_release(struct inode *inode, struct file *filp)
4756 {
4757         struct kvm_device *dev = filp->private_data;
4758         struct kvm *kvm = dev->kvm;
4759 
4760         if (dev->ops->release) {
4761                 mutex_lock(&kvm->lock);
4762                 list_del_rcu(&dev->vm_node);
4763                 synchronize_rcu();
4764                 dev->ops->release(dev);
4765                 mutex_unlock(&kvm->lock);
4766         }
4767 
4768         kvm_put_kvm(kvm);
4769         return 0;
4770 }
4771 
4772 static struct file_operations kvm_device_fops = {
4773         .unlocked_ioctl = kvm_device_ioctl,
4774         .release = kvm_device_release,
4775         KVM_COMPAT(kvm_device_ioctl),
4776         .mmap = kvm_device_mmap,
4777 };
4778 
4779 struct kvm_device *kvm_device_from_filp(struct file *filp)
4780 {
4781         if (filp->f_op != &kvm_device_fops)
4782                 return NULL;
4783 
4784         return filp->private_data;
4785 }
4786 
4787 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4788 #ifdef CONFIG_KVM_MPIC
4789         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
4790         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
4791 #endif
4792 };
4793 
4794 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4795 {
4796         if (type >= ARRAY_SIZE(kvm_device_ops_table))
4797                 return -ENOSPC;
4798 
4799         if (kvm_device_ops_table[type] != NULL)
4800                 return -EEXIST;
4801 
4802         kvm_device_ops_table[type] = ops;
4803         return 0;
4804 }
4805 
4806 void kvm_unregister_device_ops(u32 type)
4807 {
4808         if (kvm_device_ops_table[type] != NULL)
4809                 kvm_device_ops_table[type] = NULL;
4810 }
4811 
4812 static int kvm_ioctl_create_device(struct kvm *kvm,
4813                                    struct kvm_create_device *cd)
4814 {
4815         const struct kvm_device_ops *ops;
4816         struct kvm_device *dev;
4817         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4818         int type;
4819         int ret;
4820 
4821         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4822                 return -ENODEV;
4823 
4824         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4825         ops = kvm_device_ops_table[type];
4826         if (ops == NULL)
4827                 return -ENODEV;
4828 
4829         if (test)
4830                 return 0;
4831 
4832         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4833         if (!dev)
4834                 return -ENOMEM;
4835 
4836         dev->ops = ops;
4837         dev->kvm = kvm;
4838 
4839         mutex_lock(&kvm->lock);
4840         ret = ops->create(dev, type);
4841         if (ret < 0) {
4842                 mutex_unlock(&kvm->lock);
4843                 kfree(dev);
4844                 return ret;
4845         }
4846         list_add_rcu(&dev->vm_node, &kvm->devices);
4847         mutex_unlock(&kvm->lock);
4848 
4849         if (ops->init)
4850                 ops->init(dev);
4851 
4852         kvm_get_kvm(kvm);
4853         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4854         if (ret < 0) {
4855                 kvm_put_kvm_no_destroy(kvm);
4856                 mutex_lock(&kvm->lock);
4857                 list_del_rcu(&dev->vm_node);
4858                 synchronize_rcu();
4859                 if (ops->release)
4860                         ops->release(dev);
4861                 mutex_unlock(&kvm->lock);
4862                 if (ops->destroy)
4863                         ops->destroy(dev);
4864                 return ret;
4865         }
4866 
4867         cd->fd = ret;
4868         return 0;
4869 }
4870 
4871 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4872 {
4873         switch (arg) {
4874         case KVM_CAP_USER_MEMORY:
4875         case KVM_CAP_USER_MEMORY2:
4876         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4877         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4878         case KVM_CAP_INTERNAL_ERROR_DATA:
4879 #ifdef CONFIG_HAVE_KVM_MSI
4880         case KVM_CAP_SIGNAL_MSI:
4881 #endif
4882 #ifdef CONFIG_HAVE_KVM_IRQCHIP
4883         case KVM_CAP_IRQFD:
4884 #endif
4885         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4886         case KVM_CAP_CHECK_EXTENSION_VM:
4887         case KVM_CAP_ENABLE_CAP_VM:
4888         case KVM_CAP_HALT_POLL:
4889                 return 1;
4890 #ifdef CONFIG_KVM_MMIO
4891         case KVM_CAP_COALESCED_MMIO:
4892                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4893         case KVM_CAP_COALESCED_PIO:
4894                 return 1;
4895 #endif
4896 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4897         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4898                 return KVM_DIRTY_LOG_MANUAL_CAPS;
4899 #endif
4900 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4901         case KVM_CAP_IRQ_ROUTING:
4902                 return KVM_MAX_IRQ_ROUTES;
4903 #endif
4904 #if KVM_MAX_NR_ADDRESS_SPACES > 1
4905         case KVM_CAP_MULTI_ADDRESS_SPACE:
4906                 if (kvm)
4907                         return kvm_arch_nr_memslot_as_ids(kvm);
4908                 return KVM_MAX_NR_ADDRESS_SPACES;
4909 #endif
4910         case KVM_CAP_NR_MEMSLOTS:
4911                 return KVM_USER_MEM_SLOTS;
4912         case KVM_CAP_DIRTY_LOG_RING:
4913 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4914                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4915 #else
4916                 return 0;
4917 #endif
4918         case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4919 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4920                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4921 #else
4922                 return 0;
4923 #endif
4924 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4925         case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4926 #endif
4927         case KVM_CAP_BINARY_STATS_FD:
4928         case KVM_CAP_SYSTEM_EVENT_DATA:
4929         case KVM_CAP_DEVICE_CTRL:
4930                 return 1;
4931 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
4932         case KVM_CAP_MEMORY_ATTRIBUTES:
4933                 return kvm_supported_mem_attributes(kvm);
4934 #endif
4935 #ifdef CONFIG_KVM_PRIVATE_MEM
4936         case KVM_CAP_GUEST_MEMFD:
4937                 return !kvm || kvm_arch_has_private_mem(kvm);
4938 #endif
4939         default:
4940                 break;
4941         }
4942         return kvm_vm_ioctl_check_extension(kvm, arg);
4943 }
4944 
4945 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4946 {
4947         int r;
4948 
4949         if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4950                 return -EINVAL;
4951 
4952         /* the size should be power of 2 */
4953         if (!size || (size & (size - 1)))
4954                 return -EINVAL;
4955 
4956         /* Should be bigger to keep the reserved entries, or a page */
4957         if (size < kvm_dirty_ring_get_rsvd_entries() *
4958             sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4959                 return -EINVAL;
4960 
4961         if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4962             sizeof(struct kvm_dirty_gfn))
4963                 return -E2BIG;
4964 
4965         /* We only allow it to set once */
4966         if (kvm->dirty_ring_size)
4967                 return -EINVAL;
4968 
4969         mutex_lock(&kvm->lock);
4970 
4971         if (kvm->created_vcpus) {
4972                 /* We don't allow to change this value after vcpu created */
4973                 r = -EINVAL;
4974         } else {
4975                 kvm->dirty_ring_size = size;
4976                 r = 0;
4977         }
4978 
4979         mutex_unlock(&kvm->lock);
4980         return r;
4981 }
4982 
4983 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4984 {
4985         unsigned long i;
4986         struct kvm_vcpu *vcpu;
4987         int cleared = 0;
4988 
4989         if (!kvm->dirty_ring_size)
4990                 return -EINVAL;
4991 
4992         mutex_lock(&kvm->slots_lock);
4993 
4994         kvm_for_each_vcpu(i, vcpu, kvm)
4995                 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4996 
4997         mutex_unlock(&kvm->slots_lock);
4998 
4999         if (cleared)
5000                 kvm_flush_remote_tlbs(kvm);
5001 
5002         return cleared;
5003 }
5004 
5005 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5006                                                   struct kvm_enable_cap *cap)
5007 {
5008         return -EINVAL;
5009 }
5010 
5011 bool kvm_are_all_memslots_empty(struct kvm *kvm)
5012 {
5013         int i;
5014 
5015         lockdep_assert_held(&kvm->slots_lock);
5016 
5017         for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
5018                 if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
5019                         return false;
5020         }
5021 
5022         return true;
5023 }
5024 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
5025 
5026 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
5027                                            struct kvm_enable_cap *cap)
5028 {
5029         switch (cap->cap) {
5030 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5031         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
5032                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
5033 
5034                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
5035                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
5036 
5037                 if (cap->flags || (cap->args[0] & ~allowed_options))
5038                         return -EINVAL;
5039                 kvm->manual_dirty_log_protect = cap->args[0];
5040                 return 0;
5041         }
5042 #endif
5043         case KVM_CAP_HALT_POLL: {
5044                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
5045                         return -EINVAL;
5046 
5047                 kvm->max_halt_poll_ns = cap->args[0];
5048 
5049                 /*
5050                  * Ensure kvm->override_halt_poll_ns does not become visible
5051                  * before kvm->max_halt_poll_ns.
5052                  *
5053                  * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
5054                  */
5055                 smp_wmb();
5056                 kvm->override_halt_poll_ns = true;
5057 
5058                 return 0;
5059         }
5060         case KVM_CAP_DIRTY_LOG_RING:
5061         case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
5062                 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
5063                         return -EINVAL;
5064 
5065                 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
5066         case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
5067                 int r = -EINVAL;
5068 
5069                 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
5070                     !kvm->dirty_ring_size || cap->flags)
5071                         return r;
5072 
5073                 mutex_lock(&kvm->slots_lock);
5074 
5075                 /*
5076                  * For simplicity, allow enabling ring+bitmap if and only if
5077                  * there are no memslots, e.g. to ensure all memslots allocate
5078                  * a bitmap after the capability is enabled.
5079                  */
5080                 if (kvm_are_all_memslots_empty(kvm)) {
5081                         kvm->dirty_ring_with_bitmap = true;
5082                         r = 0;
5083                 }
5084 
5085                 mutex_unlock(&kvm->slots_lock);
5086 
5087                 return r;
5088         }
5089         default:
5090                 return kvm_vm_ioctl_enable_cap(kvm, cap);
5091         }
5092 }
5093 
5094 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
5095                               size_t size, loff_t *offset)
5096 {
5097         struct kvm *kvm = file->private_data;
5098 
5099         return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
5100                                 &kvm_vm_stats_desc[0], &kvm->stat,
5101                                 sizeof(kvm->stat), user_buffer, size, offset);
5102 }
5103 
5104 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
5105 {
5106         struct kvm *kvm = file->private_data;
5107 
5108         kvm_put_kvm(kvm);
5109         return 0;
5110 }
5111 
5112 static const struct file_operations kvm_vm_stats_fops = {
5113         .owner = THIS_MODULE,
5114         .read = kvm_vm_stats_read,
5115         .release = kvm_vm_stats_release,
5116         .llseek = noop_llseek,
5117 };
5118 
5119 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
5120 {
5121         int fd;
5122         struct file *file;
5123 
5124         fd = get_unused_fd_flags(O_CLOEXEC);
5125         if (fd < 0)
5126                 return fd;
5127 
5128         file = anon_inode_getfile("kvm-vm-stats",
5129                         &kvm_vm_stats_fops, kvm, O_RDONLY);
5130         if (IS_ERR(file)) {
5131                 put_unused_fd(fd);
5132                 return PTR_ERR(file);
5133         }
5134 
5135         kvm_get_kvm(kvm);
5136 
5137         file->f_mode |= FMODE_PREAD;
5138         fd_install(fd, file);
5139 
5140         return fd;
5141 }
5142 
5143 #define SANITY_CHECK_MEM_REGION_FIELD(field)                                    \
5144 do {                                                                            \
5145         BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) !=             \
5146                      offsetof(struct kvm_userspace_memory_region2, field));     \
5147         BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) !=         \
5148                      sizeof_field(struct kvm_userspace_memory_region2, field)); \
5149 } while (0)
5150 
5151 static long kvm_vm_ioctl(struct file *filp,
5152                            unsigned int ioctl, unsigned long arg)
5153 {
5154         struct kvm *kvm = filp->private_data;
5155         void __user *argp = (void __user *)arg;
5156         int r;
5157 
5158         if (kvm->mm != current->mm || kvm->vm_dead)
5159                 return -EIO;
5160         switch (ioctl) {
5161         case KVM_CREATE_VCPU:
5162                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
5163                 break;
5164         case KVM_ENABLE_CAP: {
5165                 struct kvm_enable_cap cap;
5166 
5167                 r = -EFAULT;
5168                 if (copy_from_user(&cap, argp, sizeof(cap)))
5169                         goto out;
5170                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
5171                 break;
5172         }
5173         case KVM_SET_USER_MEMORY_REGION2:
5174         case KVM_SET_USER_MEMORY_REGION: {
5175                 struct kvm_userspace_memory_region2 mem;
5176                 unsigned long size;
5177 
5178                 if (ioctl == KVM_SET_USER_MEMORY_REGION) {
5179                         /*
5180                          * Fields beyond struct kvm_userspace_memory_region shouldn't be
5181                          * accessed, but avoid leaking kernel memory in case of a bug.
5182                          */
5183                         memset(&mem, 0, sizeof(mem));
5184                         size = sizeof(struct kvm_userspace_memory_region);
5185                 } else {
5186                         size = sizeof(struct kvm_userspace_memory_region2);
5187                 }
5188 
5189                 /* Ensure the common parts of the two structs are identical. */
5190                 SANITY_CHECK_MEM_REGION_FIELD(slot);
5191                 SANITY_CHECK_MEM_REGION_FIELD(flags);
5192                 SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
5193                 SANITY_CHECK_MEM_REGION_FIELD(memory_size);
5194                 SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
5195 
5196                 r = -EFAULT;
5197                 if (copy_from_user(&mem, argp, size))
5198                         goto out;
5199 
5200                 r = -EINVAL;
5201                 if (ioctl == KVM_SET_USER_MEMORY_REGION &&
5202                     (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
5203                         goto out;
5204 
5205                 r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
5206                 break;
5207         }
5208         case KVM_GET_DIRTY_LOG: {
5209                 struct kvm_dirty_log log;
5210 
5211                 r = -EFAULT;
5212                 if (copy_from_user(&log, argp, sizeof(log)))
5213                         goto out;
5214                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5215                 break;
5216         }
5217 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5218         case KVM_CLEAR_DIRTY_LOG: {
5219                 struct kvm_clear_dirty_log log;
5220 
5221                 r = -EFAULT;
5222                 if (copy_from_user(&log, argp, sizeof(log)))
5223                         goto out;
5224                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5225                 break;
5226         }
5227 #endif
5228 #ifdef CONFIG_KVM_MMIO
5229         case KVM_REGISTER_COALESCED_MMIO: {
5230                 struct kvm_coalesced_mmio_zone zone;
5231 
5232                 r = -EFAULT;
5233                 if (copy_from_user(&zone, argp, sizeof(zone)))
5234                         goto out;
5235                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5236                 break;
5237         }
5238         case KVM_UNREGISTER_COALESCED_MMIO: {
5239                 struct kvm_coalesced_mmio_zone zone;
5240 
5241                 r = -EFAULT;
5242                 if (copy_from_user(&zone, argp, sizeof(zone)))
5243                         goto out;
5244                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5245                 break;
5246         }
5247 #endif
5248         case KVM_IRQFD: {
5249                 struct kvm_irqfd data;
5250 
5251                 r = -EFAULT;
5252                 if (copy_from_user(&data, argp, sizeof(data)))
5253                         goto out;
5254                 r = kvm_irqfd(kvm, &data);
5255                 break;
5256         }
5257         case KVM_IOEVENTFD: {
5258                 struct kvm_ioeventfd data;
5259 
5260                 r = -EFAULT;
5261                 if (copy_from_user(&data, argp, sizeof(data)))
5262                         goto out;
5263                 r = kvm_ioeventfd(kvm, &data);
5264                 break;
5265         }
5266 #ifdef CONFIG_HAVE_KVM_MSI
5267         case KVM_SIGNAL_MSI: {
5268                 struct kvm_msi msi;
5269 
5270                 r = -EFAULT;
5271                 if (copy_from_user(&msi, argp, sizeof(msi)))
5272                         goto out;
5273                 r = kvm_send_userspace_msi(kvm, &msi);
5274                 break;
5275         }
5276 #endif
5277 #ifdef __KVM_HAVE_IRQ_LINE
5278         case KVM_IRQ_LINE_STATUS:
5279         case KVM_IRQ_LINE: {
5280                 struct kvm_irq_level irq_event;
5281 
5282                 r = -EFAULT;
5283                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
5284                         goto out;
5285 
5286                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
5287                                         ioctl == KVM_IRQ_LINE_STATUS);
5288                 if (r)
5289                         goto out;
5290 
5291                 r = -EFAULT;
5292                 if (ioctl == KVM_IRQ_LINE_STATUS) {
5293                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
5294                                 goto out;
5295                 }
5296 
5297                 r = 0;
5298                 break;
5299         }
5300 #endif
5301 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
5302         case KVM_SET_GSI_ROUTING: {
5303                 struct kvm_irq_routing routing;
5304                 struct kvm_irq_routing __user *urouting;
5305                 struct kvm_irq_routing_entry *entries = NULL;
5306 
5307                 r = -EFAULT;
5308                 if (copy_from_user(&routing, argp, sizeof(routing)))
5309                         goto out;
5310                 r = -EINVAL;
5311                 if (!kvm_arch_can_set_irq_routing(kvm))
5312                         goto out;
5313                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
5314                         goto out;
5315                 if (routing.flags)
5316                         goto out;
5317                 if (routing.nr) {
5318                         urouting = argp;
5319                         entries = vmemdup_array_user(urouting->entries,
5320                                                      routing.nr, sizeof(*entries));
5321                         if (IS_ERR(entries)) {
5322                                 r = PTR_ERR(entries);
5323                                 goto out;
5324                         }
5325                 }
5326                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
5327                                         routing.flags);
5328                 kvfree(entries);
5329                 break;
5330         }
5331 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5332 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
5333         case KVM_SET_MEMORY_ATTRIBUTES: {
5334                 struct kvm_memory_attributes attrs;
5335 
5336                 r = -EFAULT;
5337                 if (copy_from_user(&attrs, argp, sizeof(attrs)))
5338                         goto out;
5339 
5340                 r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
5341                 break;
5342         }
5343 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
5344         case KVM_CREATE_DEVICE: {
5345                 struct kvm_create_device cd;
5346 
5347                 r = -EFAULT;
5348                 if (copy_from_user(&cd, argp, sizeof(cd)))
5349                         goto out;
5350 
5351                 r = kvm_ioctl_create_device(kvm, &cd);
5352                 if (r)
5353                         goto out;
5354 
5355                 r = -EFAULT;
5356                 if (copy_to_user(argp, &cd, sizeof(cd)))
5357                         goto out;
5358 
5359                 r = 0;
5360                 break;
5361         }
5362         case KVM_CHECK_EXTENSION:
5363                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
5364                 break;
5365         case KVM_RESET_DIRTY_RINGS:
5366                 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
5367                 break;
5368         case KVM_GET_STATS_FD:
5369                 r = kvm_vm_ioctl_get_stats_fd(kvm);
5370                 break;
5371 #ifdef CONFIG_KVM_PRIVATE_MEM
5372         case KVM_CREATE_GUEST_MEMFD: {
5373                 struct kvm_create_guest_memfd guest_memfd;
5374 
5375                 r = -EFAULT;
5376                 if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
5377                         goto out;
5378 
5379                 r = kvm_gmem_create(kvm, &guest_memfd);
5380                 break;
5381         }
5382 #endif
5383         default:
5384                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
5385         }
5386 out:
5387         return r;
5388 }
5389 
5390 #ifdef CONFIG_KVM_COMPAT
5391 struct compat_kvm_dirty_log {
5392         __u32 slot;
5393         __u32 padding1;
5394         union {
5395                 compat_uptr_t dirty_bitmap; /* one bit per page */
5396                 __u64 padding2;
5397         };
5398 };
5399 
5400 struct compat_kvm_clear_dirty_log {
5401         __u32 slot;
5402         __u32 num_pages;
5403         __u64 first_page;
5404         union {
5405                 compat_uptr_t dirty_bitmap; /* one bit per page */
5406                 __u64 padding2;
5407         };
5408 };
5409 
5410 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5411                                      unsigned long arg)
5412 {
5413         return -ENOTTY;
5414 }
5415 
5416 static long kvm_vm_compat_ioctl(struct file *filp,
5417                            unsigned int ioctl, unsigned long arg)
5418 {
5419         struct kvm *kvm = filp->private_data;
5420         int r;
5421 
5422         if (kvm->mm != current->mm || kvm->vm_dead)
5423                 return -EIO;
5424 
5425         r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5426         if (r != -ENOTTY)
5427                 return r;
5428 
5429         switch (ioctl) {
5430 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5431         case KVM_CLEAR_DIRTY_LOG: {
5432                 struct compat_kvm_clear_dirty_log compat_log;
5433                 struct kvm_clear_dirty_log log;
5434 
5435                 if (copy_from_user(&compat_log, (void __user *)arg,
5436                                    sizeof(compat_log)))
5437                         return -EFAULT;
5438                 log.slot         = compat_log.slot;
5439                 log.num_pages    = compat_log.num_pages;
5440                 log.first_page   = compat_log.first_page;
5441                 log.padding2     = compat_log.padding2;
5442                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5443 
5444                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5445                 break;
5446         }
5447 #endif
5448         case KVM_GET_DIRTY_LOG: {
5449                 struct compat_kvm_dirty_log compat_log;
5450                 struct kvm_dirty_log log;
5451 
5452                 if (copy_from_user(&compat_log, (void __user *)arg,
5453                                    sizeof(compat_log)))
5454                         return -EFAULT;
5455                 log.slot         = compat_log.slot;
5456                 log.padding1     = compat_log.padding1;
5457                 log.padding2     = compat_log.padding2;
5458                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5459 
5460                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5461                 break;
5462         }
5463         default:
5464                 r = kvm_vm_ioctl(filp, ioctl, arg);
5465         }
5466         return r;
5467 }
5468 #endif
5469 
5470 static struct file_operations kvm_vm_fops = {
5471         .release        = kvm_vm_release,
5472         .unlocked_ioctl = kvm_vm_ioctl,
5473         .llseek         = noop_llseek,
5474         KVM_COMPAT(kvm_vm_compat_ioctl),
5475 };
5476 
5477 bool file_is_kvm(struct file *file)
5478 {
5479         return file && file->f_op == &kvm_vm_fops;
5480 }
5481 EXPORT_SYMBOL_GPL(file_is_kvm);
5482 
5483 static int kvm_dev_ioctl_create_vm(unsigned long type)
5484 {
5485         char fdname[ITOA_MAX_LEN + 1];
5486         int r, fd;
5487         struct kvm *kvm;
5488         struct file *file;
5489 
5490         fd = get_unused_fd_flags(O_CLOEXEC);
5491         if (fd < 0)
5492                 return fd;
5493 
5494         snprintf(fdname, sizeof(fdname), "%d", fd);
5495 
5496         kvm = kvm_create_vm(type, fdname);
5497         if (IS_ERR(kvm)) {
5498                 r = PTR_ERR(kvm);
5499                 goto put_fd;
5500         }
5501 
5502         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5503         if (IS_ERR(file)) {
5504                 r = PTR_ERR(file);
5505                 goto put_kvm;
5506         }
5507 
5508         /*
5509          * Don't call kvm_put_kvm anymore at this point; file->f_op is
5510          * already set, with ->release() being kvm_vm_release().  In error
5511          * cases it will be called by the final fput(file) and will take
5512          * care of doing kvm_put_kvm(kvm).
5513          */
5514         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5515 
5516         fd_install(fd, file);
5517         return fd;
5518 
5519 put_kvm:
5520         kvm_put_kvm(kvm);
5521 put_fd:
5522         put_unused_fd(fd);
5523         return r;
5524 }
5525 
5526 static long kvm_dev_ioctl(struct file *filp,
5527                           unsigned int ioctl, unsigned long arg)
5528 {
5529         int r = -EINVAL;
5530 
5531         switch (ioctl) {
5532         case KVM_GET_API_VERSION:
5533                 if (arg)
5534                         goto out;
5535                 r = KVM_API_VERSION;
5536                 break;
5537         case KVM_CREATE_VM:
5538                 r = kvm_dev_ioctl_create_vm(arg);
5539                 break;
5540         case KVM_CHECK_EXTENSION:
5541                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5542                 break;
5543         case KVM_GET_VCPU_MMAP_SIZE:
5544                 if (arg)
5545                         goto out;
5546                 r = PAGE_SIZE;     /* struct kvm_run */
5547 #ifdef CONFIG_X86
5548                 r += PAGE_SIZE;    /* pio data page */
5549 #endif
5550 #ifdef CONFIG_KVM_MMIO
5551                 r += PAGE_SIZE;    /* coalesced mmio ring page */
5552 #endif
5553                 break;
5554         default:
5555                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
5556         }
5557 out:
5558         return r;
5559 }
5560 
5561 static struct file_operations kvm_chardev_ops = {
5562         .unlocked_ioctl = kvm_dev_ioctl,
5563         .llseek         = noop_llseek,
5564         KVM_COMPAT(kvm_dev_ioctl),
5565 };
5566 
5567 static struct miscdevice kvm_dev = {
5568         KVM_MINOR,
5569         "kvm",
5570         &kvm_chardev_ops,
5571 };
5572 
5573 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5574 __visible bool kvm_rebooting;
5575 EXPORT_SYMBOL_GPL(kvm_rebooting);
5576 
5577 static DEFINE_PER_CPU(bool, hardware_enabled);
5578 static DEFINE_MUTEX(kvm_usage_lock);
5579 static int kvm_usage_count;
5580 
5581 static int __hardware_enable_nolock(void)
5582 {
5583         if (__this_cpu_read(hardware_enabled))
5584                 return 0;
5585 
5586         if (kvm_arch_hardware_enable()) {
5587                 pr_info("kvm: enabling virtualization on CPU%d failed\n",
5588                         raw_smp_processor_id());
5589                 return -EIO;
5590         }
5591 
5592         __this_cpu_write(hardware_enabled, true);
5593         return 0;
5594 }
5595 
5596 static void hardware_enable_nolock(void *failed)
5597 {
5598         if (__hardware_enable_nolock())
5599                 atomic_inc(failed);
5600 }
5601 
5602 static int kvm_online_cpu(unsigned int cpu)
5603 {
5604         int ret = 0;
5605 
5606         /*
5607          * Abort the CPU online process if hardware virtualization cannot
5608          * be enabled. Otherwise running VMs would encounter unrecoverable
5609          * errors when scheduled to this CPU.
5610          */
5611         mutex_lock(&kvm_usage_lock);
5612         if (kvm_usage_count)
5613                 ret = __hardware_enable_nolock();
5614         mutex_unlock(&kvm_usage_lock);
5615         return ret;
5616 }
5617 
5618 static void hardware_disable_nolock(void *junk)
5619 {
5620         /*
5621          * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5622          * hardware, not just CPUs that successfully enabled hardware!
5623          */
5624         if (!__this_cpu_read(hardware_enabled))
5625                 return;
5626 
5627         kvm_arch_hardware_disable();
5628 
5629         __this_cpu_write(hardware_enabled, false);
5630 }
5631 
5632 static int kvm_offline_cpu(unsigned int cpu)
5633 {
5634         mutex_lock(&kvm_usage_lock);
5635         if (kvm_usage_count)
5636                 hardware_disable_nolock(NULL);
5637         mutex_unlock(&kvm_usage_lock);
5638         return 0;
5639 }
5640 
5641 static void hardware_disable_all_nolock(void)
5642 {
5643         BUG_ON(!kvm_usage_count);
5644 
5645         kvm_usage_count--;
5646         if (!kvm_usage_count)
5647                 on_each_cpu(hardware_disable_nolock, NULL, 1);
5648 }
5649 
5650 static void hardware_disable_all(void)
5651 {
5652         cpus_read_lock();
5653         mutex_lock(&kvm_usage_lock);
5654         hardware_disable_all_nolock();
5655         mutex_unlock(&kvm_usage_lock);
5656         cpus_read_unlock();
5657 }
5658 
5659 static int hardware_enable_all(void)
5660 {
5661         atomic_t failed = ATOMIC_INIT(0);
5662         int r;
5663 
5664         /*
5665          * Do not enable hardware virtualization if the system is going down.
5666          * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5667          * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5668          * after kvm_reboot() is called.  Note, this relies on system_state
5669          * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5670          * hook instead of registering a dedicated reboot notifier (the latter
5671          * runs before system_state is updated).
5672          */
5673         if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5674             system_state == SYSTEM_RESTART)
5675                 return -EBUSY;
5676 
5677         /*
5678          * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5679          * is called, and so on_each_cpu() between them includes the CPU that
5680          * is being onlined.  As a result, hardware_enable_nolock() may get
5681          * invoked before kvm_online_cpu(), which also enables hardware if the
5682          * usage count is non-zero.  Disable CPU hotplug to avoid attempting to
5683          * enable hardware multiple times.
5684          */
5685         cpus_read_lock();
5686         mutex_lock(&kvm_usage_lock);
5687 
5688         r = 0;
5689 
5690         kvm_usage_count++;
5691         if (kvm_usage_count == 1) {
5692                 on_each_cpu(hardware_enable_nolock, &failed, 1);
5693 
5694                 if (atomic_read(&failed)) {
5695                         hardware_disable_all_nolock();
5696                         r = -EBUSY;
5697                 }
5698         }
5699 
5700         mutex_unlock(&kvm_usage_lock);
5701         cpus_read_unlock();
5702 
5703         return r;
5704 }
5705 
5706 static void kvm_shutdown(void)
5707 {
5708         /*
5709          * Disable hardware virtualization and set kvm_rebooting to indicate
5710          * that KVM has asynchronously disabled hardware virtualization, i.e.
5711          * that relevant errors and exceptions aren't entirely unexpected.
5712          * Some flavors of hardware virtualization need to be disabled before
5713          * transferring control to firmware (to perform shutdown/reboot), e.g.
5714          * on x86, virtualization can block INIT interrupts, which are used by
5715          * firmware to pull APs back under firmware control.  Note, this path
5716          * is used for both shutdown and reboot scenarios, i.e. neither name is
5717          * 100% comprehensive.
5718          */
5719         pr_info("kvm: exiting hardware virtualization\n");
5720         kvm_rebooting = true;
5721         on_each_cpu(hardware_disable_nolock, NULL, 1);
5722 }
5723 
5724 static int kvm_suspend(void)
5725 {
5726         /*
5727          * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5728          * callbacks, i.e. no need to acquire kvm_usage_lock to ensure the usage
5729          * count is stable.  Assert that kvm_usage_lock is not held to ensure
5730          * the system isn't suspended while KVM is enabling hardware.  Hardware
5731          * enabling can be preempted, but the task cannot be frozen until it has
5732          * dropped all locks (userspace tasks are frozen via a fake signal).
5733          */
5734         lockdep_assert_not_held(&kvm_usage_lock);
5735         lockdep_assert_irqs_disabled();
5736 
5737         if (kvm_usage_count)
5738                 hardware_disable_nolock(NULL);
5739         return 0;
5740 }
5741 
5742 static void kvm_resume(void)
5743 {
5744         lockdep_assert_not_held(&kvm_usage_lock);
5745         lockdep_assert_irqs_disabled();
5746 
5747         if (kvm_usage_count)
5748                 WARN_ON_ONCE(__hardware_enable_nolock());
5749 }
5750 
5751 static struct syscore_ops kvm_syscore_ops = {
5752         .suspend = kvm_suspend,
5753         .resume = kvm_resume,
5754         .shutdown = kvm_shutdown,
5755 };
5756 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5757 static int hardware_enable_all(void)
5758 {
5759         return 0;
5760 }
5761 
5762 static void hardware_disable_all(void)
5763 {
5764 
5765 }
5766 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5767 
5768 static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5769 {
5770         if (dev->ops->destructor)
5771                 dev->ops->destructor(dev);
5772 }
5773 
5774 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5775 {
5776         int i;
5777 
5778         for (i = 0; i < bus->dev_count; i++) {
5779                 struct kvm_io_device *pos = bus->range[i].dev;
5780 
5781                 kvm_iodevice_destructor(pos);
5782         }
5783         kfree(bus);
5784 }
5785 
5786 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5787                                  const struct kvm_io_range *r2)
5788 {
5789         gpa_t addr1 = r1->addr;
5790         gpa_t addr2 = r2->addr;
5791 
5792         if (addr1 < addr2)
5793                 return -1;
5794 
5795         /* If r2->len == 0, match the exact address.  If r2->len != 0,
5796          * accept any overlapping write.  Any order is acceptable for
5797          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5798          * we process all of them.
5799          */
5800         if (r2->len) {
5801                 addr1 += r1->len;
5802                 addr2 += r2->len;
5803         }
5804 
5805         if (addr1 > addr2)
5806                 return 1;
5807 
5808         return 0;
5809 }
5810 
5811 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5812 {
5813         return kvm_io_bus_cmp(p1, p2);
5814 }
5815 
5816 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5817                              gpa_t addr, int len)
5818 {
5819         struct kvm_io_range *range, key;
5820         int off;
5821 
5822         key = (struct kvm_io_range) {
5823                 .addr = addr,
5824                 .len = len,
5825         };
5826 
5827         range = bsearch(&key, bus->range, bus->dev_count,
5828                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5829         if (range == NULL)
5830                 return -ENOENT;
5831 
5832         off = range - bus->range;
5833 
5834         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5835                 off--;
5836 
5837         return off;
5838 }
5839 
5840 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5841                               struct kvm_io_range *range, const void *val)
5842 {
5843         int idx;
5844 
5845         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5846         if (idx < 0)
5847                 return -EOPNOTSUPP;
5848 
5849         while (idx < bus->dev_count &&
5850                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5851                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5852                                         range->len, val))
5853                         return idx;
5854                 idx++;
5855         }
5856 
5857         return -EOPNOTSUPP;
5858 }
5859 
5860 /* kvm_io_bus_write - called under kvm->slots_lock */
5861 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5862                      int len, const void *val)
5863 {
5864         struct kvm_io_bus *bus;
5865         struct kvm_io_range range;
5866         int r;
5867 
5868         range = (struct kvm_io_range) {
5869                 .addr = addr,
5870                 .len = len,
5871         };
5872 
5873         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5874         if (!bus)
5875                 return -ENOMEM;
5876         r = __kvm_io_bus_write(vcpu, bus, &range, val);
5877         return r < 0 ? r : 0;
5878 }
5879 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5880 
5881 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5882 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5883                             gpa_t addr, int len, const void *val, long cookie)
5884 {
5885         struct kvm_io_bus *bus;
5886         struct kvm_io_range range;
5887 
5888         range = (struct kvm_io_range) {
5889                 .addr = addr,
5890                 .len = len,
5891         };
5892 
5893         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5894         if (!bus)
5895                 return -ENOMEM;
5896 
5897         /* First try the device referenced by cookie. */
5898         if ((cookie >= 0) && (cookie < bus->dev_count) &&
5899             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5900                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5901                                         val))
5902                         return cookie;
5903 
5904         /*
5905          * cookie contained garbage; fall back to search and return the
5906          * correct cookie value.
5907          */
5908         return __kvm_io_bus_write(vcpu, bus, &range, val);
5909 }
5910 
5911 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5912                              struct kvm_io_range *range, void *val)
5913 {
5914         int idx;
5915 
5916         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5917         if (idx < 0)
5918                 return -EOPNOTSUPP;
5919 
5920         while (idx < bus->dev_count &&
5921                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5922                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5923                                        range->len, val))
5924                         return idx;
5925                 idx++;
5926         }
5927 
5928         return -EOPNOTSUPP;
5929 }
5930 
5931 /* kvm_io_bus_read - called under kvm->slots_lock */
5932 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5933                     int len, void *val)
5934 {
5935         struct kvm_io_bus *bus;
5936         struct kvm_io_range range;
5937         int r;
5938 
5939         range = (struct kvm_io_range) {
5940                 .addr = addr,
5941                 .len = len,
5942         };
5943 
5944         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5945         if (!bus)
5946                 return -ENOMEM;
5947         r = __kvm_io_bus_read(vcpu, bus, &range, val);
5948         return r < 0 ? r : 0;
5949 }
5950 
5951 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5952                             int len, struct kvm_io_device *dev)
5953 {
5954         int i;
5955         struct kvm_io_bus *new_bus, *bus;
5956         struct kvm_io_range range;
5957 
5958         lockdep_assert_held(&kvm->slots_lock);
5959 
5960         bus = kvm_get_bus(kvm, bus_idx);
5961         if (!bus)
5962                 return -ENOMEM;
5963 
5964         /* exclude ioeventfd which is limited by maximum fd */
5965         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5966                 return -ENOSPC;
5967 
5968         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5969                           GFP_KERNEL_ACCOUNT);
5970         if (!new_bus)
5971                 return -ENOMEM;
5972 
5973         range = (struct kvm_io_range) {
5974                 .addr = addr,
5975                 .len = len,
5976                 .dev = dev,
5977         };
5978 
5979         for (i = 0; i < bus->dev_count; i++)
5980                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5981                         break;
5982 
5983         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5984         new_bus->dev_count++;
5985         new_bus->range[i] = range;
5986         memcpy(new_bus->range + i + 1, bus->range + i,
5987                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5988         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5989         synchronize_srcu_expedited(&kvm->srcu);
5990         kfree(bus);
5991 
5992         return 0;
5993 }
5994 
5995 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5996                               struct kvm_io_device *dev)
5997 {
5998         int i;
5999         struct kvm_io_bus *new_bus, *bus;
6000 
6001         lockdep_assert_held(&kvm->slots_lock);
6002 
6003         bus = kvm_get_bus(kvm, bus_idx);
6004         if (!bus)
6005                 return 0;
6006 
6007         for (i = 0; i < bus->dev_count; i++) {
6008                 if (bus->range[i].dev == dev) {
6009                         break;
6010                 }
6011         }
6012 
6013         if (i == bus->dev_count)
6014                 return 0;
6015 
6016         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
6017                           GFP_KERNEL_ACCOUNT);
6018         if (new_bus) {
6019                 memcpy(new_bus, bus, struct_size(bus, range, i));
6020                 new_bus->dev_count--;
6021                 memcpy(new_bus->range + i, bus->range + i + 1,
6022                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
6023         }
6024 
6025         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
6026         synchronize_srcu_expedited(&kvm->srcu);
6027 
6028         /*
6029          * If NULL bus is installed, destroy the old bus, including all the
6030          * attached devices. Otherwise, destroy the caller's device only.
6031          */
6032         if (!new_bus) {
6033                 pr_err("kvm: failed to shrink bus, removing it completely\n");
6034                 kvm_io_bus_destroy(bus);
6035                 return -ENOMEM;
6036         }
6037 
6038         kvm_iodevice_destructor(dev);
6039         kfree(bus);
6040         return 0;
6041 }
6042 
6043 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
6044                                          gpa_t addr)
6045 {
6046         struct kvm_io_bus *bus;
6047         int dev_idx, srcu_idx;
6048         struct kvm_io_device *iodev = NULL;
6049 
6050         srcu_idx = srcu_read_lock(&kvm->srcu);
6051 
6052         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
6053         if (!bus)
6054                 goto out_unlock;
6055 
6056         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
6057         if (dev_idx < 0)
6058                 goto out_unlock;
6059 
6060         iodev = bus->range[dev_idx].dev;
6061 
6062 out_unlock:
6063         srcu_read_unlock(&kvm->srcu, srcu_idx);
6064 
6065         return iodev;
6066 }
6067 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
6068 
6069 static int kvm_debugfs_open(struct inode *inode, struct file *file,
6070                            int (*get)(void *, u64 *), int (*set)(void *, u64),
6071                            const char *fmt)
6072 {
6073         int ret;
6074         struct kvm_stat_data *stat_data = inode->i_private;
6075 
6076         /*
6077          * The debugfs files are a reference to the kvm struct which
6078         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
6079         * avoids the race between open and the removal of the debugfs directory.
6080          */
6081         if (!kvm_get_kvm_safe(stat_data->kvm))
6082                 return -ENOENT;
6083 
6084         ret = simple_attr_open(inode, file, get,
6085                                kvm_stats_debugfs_mode(stat_data->desc) & 0222
6086                                ? set : NULL, fmt);
6087         if (ret)
6088                 kvm_put_kvm(stat_data->kvm);
6089 
6090         return ret;
6091 }
6092 
6093 static int kvm_debugfs_release(struct inode *inode, struct file *file)
6094 {
6095         struct kvm_stat_data *stat_data = inode->i_private;
6096 
6097         simple_attr_release(inode, file);
6098         kvm_put_kvm(stat_data->kvm);
6099 
6100         return 0;
6101 }
6102 
6103 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
6104 {
6105         *val = *(u64 *)((void *)(&kvm->stat) + offset);
6106 
6107         return 0;
6108 }
6109 
6110 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
6111 {
6112         *(u64 *)((void *)(&kvm->stat) + offset) = 0;
6113 
6114         return 0;
6115 }
6116 
6117 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
6118 {
6119         unsigned long i;
6120         struct kvm_vcpu *vcpu;
6121 
6122         *val = 0;
6123 
6124         kvm_for_each_vcpu(i, vcpu, kvm)
6125                 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
6126 
6127         return 0;
6128 }
6129 
6130 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
6131 {
6132         unsigned long i;
6133         struct kvm_vcpu *vcpu;
6134 
6135         kvm_for_each_vcpu(i, vcpu, kvm)
6136                 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
6137 
6138         return 0;
6139 }
6140 
6141 static int kvm_stat_data_get(void *data, u64 *val)
6142 {
6143         int r = -EFAULT;
6144         struct kvm_stat_data *stat_data = data;
6145 
6146         switch (stat_data->kind) {
6147         case KVM_STAT_VM:
6148                 r = kvm_get_stat_per_vm(stat_data->kvm,
6149                                         stat_data->desc->desc.offset, val);
6150                 break;
6151         case KVM_STAT_VCPU:
6152                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
6153                                           stat_data->desc->desc.offset, val);
6154                 break;
6155         }
6156 
6157         return r;
6158 }
6159 
6160 static int kvm_stat_data_clear(void *data, u64 val)
6161 {
6162         int r = -EFAULT;
6163         struct kvm_stat_data *stat_data = data;
6164 
6165         if (val)
6166                 return -EINVAL;
6167 
6168         switch (stat_data->kind) {
6169         case KVM_STAT_VM:
6170                 r = kvm_clear_stat_per_vm(stat_data->kvm,
6171                                           stat_data->desc->desc.offset);
6172                 break;
6173         case KVM_STAT_VCPU:
6174                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
6175                                             stat_data->desc->desc.offset);
6176                 break;
6177         }
6178 
6179         return r;
6180 }
6181 
6182 static int kvm_stat_data_open(struct inode *inode, struct file *file)
6183 {
6184         __simple_attr_check_format("%llu\n", 0ull);
6185         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
6186                                 kvm_stat_data_clear, "%llu\n");
6187 }
6188 
6189 static const struct file_operations stat_fops_per_vm = {
6190         .owner = THIS_MODULE,
6191         .open = kvm_stat_data_open,
6192         .release = kvm_debugfs_release,
6193         .read = simple_attr_read,
6194         .write = simple_attr_write,
6195         .llseek = no_llseek,
6196 };
6197 
6198 static int vm_stat_get(void *_offset, u64 *val)
6199 {
6200         unsigned offset = (long)_offset;
6201         struct kvm *kvm;
6202         u64 tmp_val;
6203 
6204         *val = 0;
6205         mutex_lock(&kvm_lock);
6206         list_for_each_entry(kvm, &vm_list, vm_list) {
6207                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
6208                 *val += tmp_val;
6209         }
6210         mutex_unlock(&kvm_lock);
6211         return 0;
6212 }
6213 
6214 static int vm_stat_clear(void *_offset, u64 val)
6215 {
6216         unsigned offset = (long)_offset;
6217         struct kvm *kvm;
6218 
6219         if (val)
6220                 return -EINVAL;
6221 
6222         mutex_lock(&kvm_lock);
6223         list_for_each_entry(kvm, &vm_list, vm_list) {
6224                 kvm_clear_stat_per_vm(kvm, offset);
6225         }
6226         mutex_unlock(&kvm_lock);
6227 
6228         return 0;
6229 }
6230 
6231 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
6232 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
6233 
6234 static int vcpu_stat_get(void *_offset, u64 *val)
6235 {
6236         unsigned offset = (long)_offset;
6237         struct kvm *kvm;
6238         u64 tmp_val;
6239 
6240         *val = 0;
6241         mutex_lock(&kvm_lock);
6242         list_for_each_entry(kvm, &vm_list, vm_list) {
6243                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
6244                 *val += tmp_val;
6245         }
6246         mutex_unlock(&kvm_lock);
6247         return 0;
6248 }
6249 
6250 static int vcpu_stat_clear(void *_offset, u64 val)
6251 {
6252         unsigned offset = (long)_offset;
6253         struct kvm *kvm;
6254 
6255         if (val)
6256                 return -EINVAL;
6257 
6258         mutex_lock(&kvm_lock);
6259         list_for_each_entry(kvm, &vm_list, vm_list) {
6260                 kvm_clear_stat_per_vcpu(kvm, offset);
6261         }
6262         mutex_unlock(&kvm_lock);
6263 
6264         return 0;
6265 }
6266 
6267 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
6268                         "%llu\n");
6269 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
6270 
6271 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
6272 {
6273         struct kobj_uevent_env *env;
6274         unsigned long long created, active;
6275 
6276         if (!kvm_dev.this_device || !kvm)
6277                 return;
6278 
6279         mutex_lock(&kvm_lock);
6280         if (type == KVM_EVENT_CREATE_VM) {
6281                 kvm_createvm_count++;
6282                 kvm_active_vms++;
6283         } else if (type == KVM_EVENT_DESTROY_VM) {
6284                 kvm_active_vms--;
6285         }
6286         created = kvm_createvm_count;
6287         active = kvm_active_vms;
6288         mutex_unlock(&kvm_lock);
6289 
6290         env = kzalloc(sizeof(*env), GFP_KERNEL);
6291         if (!env)
6292                 return;
6293 
6294         add_uevent_var(env, "CREATED=%llu", created);
6295         add_uevent_var(env, "COUNT=%llu", active);
6296 
6297         if (type == KVM_EVENT_CREATE_VM) {
6298                 add_uevent_var(env, "EVENT=create");
6299                 kvm->userspace_pid = task_pid_nr(current);
6300         } else if (type == KVM_EVENT_DESTROY_VM) {
6301                 add_uevent_var(env, "EVENT=destroy");
6302         }
6303         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
6304 
6305         if (!IS_ERR(kvm->debugfs_dentry)) {
6306                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
6307 
6308                 if (p) {
6309                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
6310                         if (!IS_ERR(tmp))
6311                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
6312                         kfree(p);
6313                 }
6314         }
6315         /* no need for checks, since we are adding at most only 5 keys */
6316         env->envp[env->envp_idx++] = NULL;
6317         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
6318         kfree(env);
6319 }
6320 
6321 static void kvm_init_debug(void)
6322 {
6323         const struct file_operations *fops;
6324         const struct _kvm_stats_desc *pdesc;
6325         int i;
6326 
6327         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
6328 
6329         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6330                 pdesc = &kvm_vm_stats_desc[i];
6331                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
6332                         fops = &vm_stat_fops;
6333                 else
6334                         fops = &vm_stat_readonly_fops;
6335                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6336                                 kvm_debugfs_dir,
6337                                 (void *)(long)pdesc->desc.offset, fops);
6338         }
6339 
6340         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6341                 pdesc = &kvm_vcpu_stats_desc[i];
6342                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
6343                         fops = &vcpu_stat_fops;
6344                 else
6345                         fops = &vcpu_stat_readonly_fops;
6346                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6347                                 kvm_debugfs_dir,
6348                                 (void *)(long)pdesc->desc.offset, fops);
6349         }
6350 }
6351 
6352 static inline
6353 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6354 {
6355         return container_of(pn, struct kvm_vcpu, preempt_notifier);
6356 }
6357 
6358 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6359 {
6360         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6361 
6362         WRITE_ONCE(vcpu->preempted, false);
6363         WRITE_ONCE(vcpu->ready, false);
6364 
6365         __this_cpu_write(kvm_running_vcpu, vcpu);
6366         kvm_arch_vcpu_load(vcpu, cpu);
6367 
6368         WRITE_ONCE(vcpu->scheduled_out, false);
6369 }
6370 
6371 static void kvm_sched_out(struct preempt_notifier *pn,
6372                           struct task_struct *next)
6373 {
6374         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6375 
6376         WRITE_ONCE(vcpu->scheduled_out, true);
6377 
6378         if (current->on_rq && vcpu->wants_to_run) {
6379                 WRITE_ONCE(vcpu->preempted, true);
6380                 WRITE_ONCE(vcpu->ready, true);
6381         }
6382         kvm_arch_vcpu_put(vcpu);
6383         __this_cpu_write(kvm_running_vcpu, NULL);
6384 }
6385 
6386 /**
6387  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
6388  *
6389  * We can disable preemption locally around accessing the per-CPU variable,
6390  * and use the resolved vcpu pointer after enabling preemption again,
6391  * because even if the current thread is migrated to another CPU, reading
6392  * the per-CPU value later will give us the same value as we update the
6393  * per-CPU variable in the preempt notifier handlers.
6394  */
6395 struct kvm_vcpu *kvm_get_running_vcpu(void)
6396 {
6397         struct kvm_vcpu *vcpu;
6398 
6399         preempt_disable();
6400         vcpu = __this_cpu_read(kvm_running_vcpu);
6401         preempt_enable();
6402 
6403         return vcpu;
6404 }
6405 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
6406 
6407 /**
6408  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6409  */
6410 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6411 {
6412         return &kvm_running_vcpu;
6413 }
6414 
6415 #ifdef CONFIG_GUEST_PERF_EVENTS
6416 static unsigned int kvm_guest_state(void)
6417 {
6418         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6419         unsigned int state;
6420 
6421         if (!kvm_arch_pmi_in_guest(vcpu))
6422                 return 0;
6423 
6424         state = PERF_GUEST_ACTIVE;
6425         if (!kvm_arch_vcpu_in_kernel(vcpu))
6426                 state |= PERF_GUEST_USER;
6427 
6428         return state;
6429 }
6430 
6431 static unsigned long kvm_guest_get_ip(void)
6432 {
6433         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6434 
6435         /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6436         if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6437                 return 0;
6438 
6439         return kvm_arch_vcpu_get_ip(vcpu);
6440 }
6441 
6442 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6443         .state                  = kvm_guest_state,
6444         .get_ip                 = kvm_guest_get_ip,
6445         .handle_intel_pt_intr   = NULL,
6446 };
6447 
6448 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6449 {
6450         kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6451         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6452 }
6453 void kvm_unregister_perf_callbacks(void)
6454 {
6455         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6456 }
6457 #endif
6458 
6459 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6460 {
6461         int r;
6462         int cpu;
6463 
6464 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6465         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
6466                                       kvm_online_cpu, kvm_offline_cpu);
6467         if (r)
6468                 return r;
6469 
6470         register_syscore_ops(&kvm_syscore_ops);
6471 #endif
6472 
6473         /* A kmem cache lets us meet the alignment requirements of fx_save. */
6474         if (!vcpu_align)
6475                 vcpu_align = __alignof__(struct kvm_vcpu);
6476         kvm_vcpu_cache =
6477                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6478                                            SLAB_ACCOUNT,
6479                                            offsetof(struct kvm_vcpu, arch),
6480                                            offsetofend(struct kvm_vcpu, stats_id)
6481                                            - offsetof(struct kvm_vcpu, arch),
6482                                            NULL);
6483         if (!kvm_vcpu_cache) {
6484                 r = -ENOMEM;
6485                 goto err_vcpu_cache;
6486         }
6487 
6488         for_each_possible_cpu(cpu) {
6489                 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6490                                             GFP_KERNEL, cpu_to_node(cpu))) {
6491                         r = -ENOMEM;
6492                         goto err_cpu_kick_mask;
6493                 }
6494         }
6495 
6496         r = kvm_irqfd_init();
6497         if (r)
6498                 goto err_irqfd;
6499 
6500         r = kvm_async_pf_init();
6501         if (r)
6502                 goto err_async_pf;
6503 
6504         kvm_chardev_ops.owner = module;
6505         kvm_vm_fops.owner = module;
6506         kvm_vcpu_fops.owner = module;
6507         kvm_device_fops.owner = module;
6508 
6509         kvm_preempt_ops.sched_in = kvm_sched_in;
6510         kvm_preempt_ops.sched_out = kvm_sched_out;
6511 
6512         kvm_init_debug();
6513 
6514         r = kvm_vfio_ops_init();
6515         if (WARN_ON_ONCE(r))
6516                 goto err_vfio;
6517 
6518         kvm_gmem_init(module);
6519 
6520         /*
6521          * Registration _must_ be the very last thing done, as this exposes
6522          * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6523          */
6524         r = misc_register(&kvm_dev);
6525         if (r) {
6526                 pr_err("kvm: misc device register failed\n");
6527                 goto err_register;
6528         }
6529 
6530         return 0;
6531 
6532 err_register:
6533         kvm_vfio_ops_exit();
6534 err_vfio:
6535         kvm_async_pf_deinit();
6536 err_async_pf:
6537         kvm_irqfd_exit();
6538 err_irqfd:
6539 err_cpu_kick_mask:
6540         for_each_possible_cpu(cpu)
6541                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6542         kmem_cache_destroy(kvm_vcpu_cache);
6543 err_vcpu_cache:
6544 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6545         unregister_syscore_ops(&kvm_syscore_ops);
6546         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6547 #endif
6548         return r;
6549 }
6550 EXPORT_SYMBOL_GPL(kvm_init);
6551 
6552 void kvm_exit(void)
6553 {
6554         int cpu;
6555 
6556         /*
6557          * Note, unregistering /dev/kvm doesn't strictly need to come first,
6558          * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6559          * to KVM while the module is being stopped.
6560          */
6561         misc_deregister(&kvm_dev);
6562 
6563         debugfs_remove_recursive(kvm_debugfs_dir);
6564         for_each_possible_cpu(cpu)
6565                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6566         kmem_cache_destroy(kvm_vcpu_cache);
6567         kvm_vfio_ops_exit();
6568         kvm_async_pf_deinit();
6569 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6570         unregister_syscore_ops(&kvm_syscore_ops);
6571         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6572 #endif
6573         kvm_irqfd_exit();
6574 }
6575 EXPORT_SYMBOL_GPL(kvm_exit);
6576 
6577 struct kvm_vm_worker_thread_context {
6578         struct kvm *kvm;
6579         struct task_struct *parent;
6580         struct completion init_done;
6581         kvm_vm_thread_fn_t thread_fn;
6582         uintptr_t data;
6583         int err;
6584 };
6585 
6586 static int kvm_vm_worker_thread(void *context)
6587 {
6588         /*
6589          * The init_context is allocated on the stack of the parent thread, so
6590          * we have to locally copy anything that is needed beyond initialization
6591          */
6592         struct kvm_vm_worker_thread_context *init_context = context;
6593         struct task_struct *parent;
6594         struct kvm *kvm = init_context->kvm;
6595         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6596         uintptr_t data = init_context->data;
6597         int err;
6598 
6599         err = kthread_park(current);
6600         /* kthread_park(current) is never supposed to return an error */
6601         WARN_ON(err != 0);
6602         if (err)
6603                 goto init_complete;
6604 
6605         err = cgroup_attach_task_all(init_context->parent, current);
6606         if (err) {
6607                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6608                         __func__, err);
6609                 goto init_complete;
6610         }
6611 
6612         set_user_nice(current, task_nice(init_context->parent));
6613 
6614 init_complete:
6615         init_context->err = err;
6616         complete(&init_context->init_done);
6617         init_context = NULL;
6618 
6619         if (err)
6620                 goto out;
6621 
6622         /* Wait to be woken up by the spawner before proceeding. */
6623         kthread_parkme();
6624 
6625         if (!kthread_should_stop())
6626                 err = thread_fn(kvm, data);
6627 
6628 out:
6629         /*
6630          * Move kthread back to its original cgroup to prevent it lingering in
6631          * the cgroup of the VM process, after the latter finishes its
6632          * execution.
6633          *
6634          * kthread_stop() waits on the 'exited' completion condition which is
6635          * set in exit_mm(), via mm_release(), in do_exit(). However, the
6636          * kthread is removed from the cgroup in the cgroup_exit() which is
6637          * called after the exit_mm(). This causes the kthread_stop() to return
6638          * before the kthread actually quits the cgroup.
6639          */
6640         rcu_read_lock();
6641         parent = rcu_dereference(current->real_parent);
6642         get_task_struct(parent);
6643         rcu_read_unlock();
6644         cgroup_attach_task_all(parent, current);
6645         put_task_struct(parent);
6646 
6647         return err;
6648 }
6649 
6650 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6651                                 uintptr_t data, const char *name,
6652                                 struct task_struct **thread_ptr)
6653 {
6654         struct kvm_vm_worker_thread_context init_context = {};
6655         struct task_struct *thread;
6656 
6657         *thread_ptr = NULL;
6658         init_context.kvm = kvm;
6659         init_context.parent = current;
6660         init_context.thread_fn = thread_fn;
6661         init_context.data = data;
6662         init_completion(&init_context.init_done);
6663 
6664         thread = kthread_run(kvm_vm_worker_thread, &init_context,
6665                              "%s-%d", name, task_pid_nr(current));
6666         if (IS_ERR(thread))
6667                 return PTR_ERR(thread);
6668 
6669         /* kthread_run is never supposed to return NULL */
6670         WARN_ON(thread == NULL);
6671 
6672         wait_for_completion(&init_context.init_done);
6673 
6674         if (!init_context.err)
6675                 *thread_ptr = thread;
6676 
6677         return init_context.err;
6678 }
6679 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php